ejabberd 2.1.5

Installation and Operation Guide

ejabberd Development Team

Contents

1 Introduction 9
1.1 Key Features e 10
1.2 Additional Features 11

2 Installing ejabberd 13
2.1 Installing ejabberd with Binary Installer 13
2.2 Installing ejabberd with Operating System Specific Packages 14
2.3 Installing ejabberd with CEAN 14
2.4 Installing ejabberd from Source Code, 14

2.4.1 Requirements 15
2.4.2 Download Source Code 15
2.4.3 Compileo 16
244 Imstall . . .o oL 16
2.4.5 Start L. e 17
2.4.6 Specific Notes for BSDo 18
2.4.7 Specific Notes for Sun Solaris 18
2.4.8 Specific Notes for Microsoft Windows 18
2.5 Create a XMPP Account for Administration 20
2.6 Upgrading ejabberd L 20

4 Contents
3 Configuring ejabberd 21
3.1 Basic Configuration e 21
3.1.1 Host Names oo e 21
3.1.2 Virtual Hosting 22
3.1.3 Listening Portso o o 24
3.1.4 Authentication 32
315 AccessRules 36
3.1.6 Shapers e 39
3.1.7 Default Language 40
3.1.8 CAPTCHA 40
3.1.9 STUN . . . 41
3.1.10 Include Additional Configuration Files 42
3.1.11 Option Macros in Configuration File 43

3.2 Database and LDAP Configuration 44
321 MySQL . . . o 45
3.2.2 Microsoft SQL Server 47
3.2.3 PostgreSQL 48
3.24 ODBC Compatible 50
3.25 LDAP . . . e 51

3.3 Modules Configuration 56
3.3.1 Modules Overview 56
3.3.2 Common Options e 58
3.3.3 mMod_annoUNCe e 60
3.34 mod_diSCo 61
3.3.5 mod_echo 63
3.3.6 modhttpbind Lo 63
3.3.7 modhttp_fileserver 65
3.3.8 mod_irc ... 66

CONTENTS 5

3.3.9 mod_last 67
3.3.10 modmuco e e e e 68
3.3.11 modmuc_log 72
3.3.12 mod_offline 75
3.3.13 modping 75
3.3.14 modprivacy 76
3.3.15 modprivate 7
3.3.16 mod_proxy65 7
3.3.17 modpubsub 78
3.3.18 mod.register 80
3.3.19 mod_roster e 82
3.3.20 mod_service log 83
3.3.21 mod_shared._roster 83
3.3.22 modosic 85
3.323 modstats 85
3.3.24 mod_time e e e 86
3.3.25 mod_vecard L e e e e e 86
3.3.26 modvcard.ldap 87
3.3.27 mod_vcard xupdate 91
3.3.28 mod._versionl e 91

4 Managing an ejabberd Server 93
4.1 ejabberdctl 93
4.1.1 ejabberdctl Commands Lo Lo 93
4.1.2 Erlang Runtime System o L. 94

4.2 ejabberd Commands L 96
4.2.1 List of ejabberd Commands L 0. 96
4.2.2 Restrict Execution with AccessCommands 97

4.3 Web Admin 98

6 Contents

4.4 Ad-hoc Commands L 100
4.5 Change Computer Hostname, 100

5 Securing ejabberd 103
5.1 Firewall Settings 103
5.2 epmd e e 103
5.3 Erlang Cookie L e 104
5.4 Erlang Node Name o L 104
5.5 Securing Sensitive Files o o 104

6 Clustering 107
6.1 How it Works 107
6.1.1 Router e 107

6.1.2 Local Router 107

6.1.3 Session Manager 108

6.1.4 s2s Manager. 108

6.2 Clustering Setup oL e 108
6.3 Service Load-Balancing L o 109
6.3.1 Components Load-Balancing 109

6.3.2 Domain Load-Balancing Algorithm 109

6.3.3 Load-Balancing Buckets 0L 110

7 Debugging 111
7.1 LogFiles e 111
7.2 Debug Console 112
7.3 Watchdog Alerts 112

A Internationalization and Localization 113
B Release Notes 115

C Acknowledgements 117

CONTENTS 7

D Copyright Information 119

Contents

Chapter 1

Introduction

ejabberd is a free and open source instant messaging server written in Erlang/OTP!.

ejabberd is cross-platform, distributed, fault-tolerant, and based on open standards to achieve
real-time communication.

ejabberd is designed to be a rock-solid and feature rich XMPP server.

ejabberd is suitable for small deployments, whether they need to be scalable or not, as well as
extremely big deployments.

Thttp://www.erlang.org/

http://www.erlang.org/

10 1. Introduction

1.1 Key Features
ejabberd is:

e Cross-platform: ejabberd runs under Microsoft Windows and Unix derived systems such
as Linux, FreeBSD and NetBSD.

e Distributed: You can run ejabberd on a cluster of machines and all of them will serve the
same Jabber domain(s). When you need more capacity you can simply add a new cheap
node to your cluster. Accordingly, you do not need to buy an expensive high-end machine
to support tens of thousands concurrent users.

e Fault-tolerant: You can deploy an ejabberd cluster so that all the information required for
a properly working service will be replicated permanently on all nodes. This means that if
one of the nodes crashes, the others will continue working without disruption. In addition,
nodes also can be added or replaced ‘on the fly’.

e Administrator Friendly: ejabberd is built on top of the Open Source Erlang. As a result
you do not need to install an external database, an external web server, amongst others be-
cause everything is already included, and ready to run out of the box. Other administrator
benefits include:

— Comprehensive documentation.

— Straightforward installers for Linux, Mac OS X, and Windows.
— Web Administration.

— Shared Roster Groups.

— Command line administration tool.

— Can integrate with existing authentication mechanisms.

Capability to send announce messages.

e Internationalized: ejabberd leads in internationalization. Hence it is very well suited in a
globalized world. Related features are:

— Translated to 25 languages.
— Support for IDNAZ.

e Open Standards: ejabberd is the first Open Source Jabber server claiming to fully comply
to the XMPP standard.

— Fully XMPP compliant.
— XML-based protocol.
— Many protocols supported?.

2http://www.ietf.org/rfc/rfc3490.txt
Shttp://www.ejabberd.im/protocols

http://www.ietf.org/rfc/rfc3490.txt
http://www.ejabberd.im/protocols

1.2 Additional Features

11

1.2 Additional Features

Moreover, ejabberd comes with a wide range of other state-of-the-art features:

e Modular

— Load only the modules you want.

— Extend ejabberd with your own custom modules.

Security

— SASL and STARTTLS for ¢2s and s2s connections.
— STARTTLS and Dialback s2s connections.

— Web Admin accessible via HTTPS secure access.
Databases

Internal database for fast deployment (Mnesia).

Native MySQL support.

Native PostgreSQL support.

ODBC data storage support.

Microsoft SQL Server support.

Authentication

Internal Authentication.
PAM, LDAP and ODBC.

— External Authentication script.

Others

Support for virtual hosting.

Compressing XML streams with Stream Compression (XEP-0138%).

Statistics via Statistics Gathering (XEP-0039°).

IPv6 support both for ¢2s and s2s connections.

Multi-User Chat® module with support for clustering and HTML logging.

Users Directory based on users vCards.

Publish-Subscribe” component with support for Personal Eventing via Pubsub®.
Support for web clients: HTTP Polling’ and HTTP Binding (BOSH)'° services.

IRC transport.

Component support: interface with networks such as AIM, ICQ and MSN installing

special tranports.

4http
Shttp
Shttp
"http
Shttp
http
Ohttp

://xmpp.org/extensions/xep-0138.
://xmpp.org/extensions/xep-0039.
://xmpp.org/extensions/xep-0045.
://xmpp.org/extensions/xep-0060.
://xmpp.org/extensions/xep-0163.
://xmpp.org/extensions/xep-0025.
://xmpp.org/extensions/xep-0206.

html
html
html
html
html
html
html

http://xmpp.org/extensions/xep-0138.html
http://xmpp.org/extensions/xep-0039.html
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0163.html
http://xmpp.org/extensions/xep-0025.html
http://xmpp.org/extensions/xep-0206.html

12

1. Introduction

Chapter 2

Installing ejabberd

2.1 Installing ejabberd with Binary Installer

Probably the easiest way to install an ejabberd instant messaging server is using the binary in-
staller published by ProcessOne. The binary installers of released e jabberd versions are available
in the ProcessOne ejabberd downloads page: http://www.process-one.net/en/ejabberd/downloads

The installer will deploy and configure a full featured ejabberd server and does not require any
extra dependencies.

In *nix systems, remember to set executable the binary installer before starting it. For example:

chmod +x ejabberd-2.0.0_1-linux-x86-installer.bin
./ejabberd-2.0.0_1-linux-x86-installer.bin

ejabberd can be started manually at any time, or automatically by the operating system at
system boot time.

To start and stop ejabberd manually, use the desktop shortcuts created by the installer. If the
machine doesn’t have a graphical system, use the scripts ’start’ and ’stop’ in the ’bin’ directory
where ejabberd is installed.

The Windows installer also adds ejabberd as a system service, and a shortcut to a debug console
for experienced administrators. If you want ejabberd to be started automatically at boot time,
go to the Windows service settings and set ejabberd to be automatically started. Note that
the Windows service is a feature still in development, and for example it doesn’t read the file
ejabberdctl.cfg.

On a *nix system, if you want ejabberd to be started as daemon at boot time, copy ejabberd.init
from the ’bin’ directory to something like /etc/init.d/ejabberd (depending on your distribu-
tion). Create a system user called ejabberd; it will be used by the script to start the server.
Then you can call /etc/inid.d/ejabberd start as root to start the server.

13

http://www.process-one.net/en/ejabberd/downloads

14 2. Installing ejabberd

If ejabberd doesn’t start correctly in Windows, try to start it using the shortcut in desktop
or start menu. If the window shows error 14001, the solution is to install: ”Microsoft Visual
C++ 2005 SP1 Redistributable Package”. You can download it from www.microsoft.com®. Then
uninstall ejabberd and install it again.

If ejabberd doesn’t start correctly and a crash dump is generated, there was a severe problem.
You can try starting ejabberd with the script bin/live.bat in Windows, or with the com-
mand bin/ejabberdctl live in other Operating Systems. This way you see the error message
provided by Erlang and can identify what is exactly the problem.

The ejabberdctl administration script is included in the bin directory. Please refer to the
section 4.1 for details about ejabberdctl, and configurable options to fine tune the Erlang
runtime system.

2.2 Installing ejabberd with Operating System Specific Pack-
ages

Some Operating Systems provide a specific ejabberd package adapted to the system architecture
and libraries. It usually also checks dependencies and performs basic configuration tasks like
creating the initial administrator account. Some examples are Debian and Gentoo. Consult the
resources provided by your Operating System for more information.

Usually those packages create a script like /etc/init.d/ejabberd to start and stop ejabberd
as a service at boot time.

2.3 Installing ejabberd with CEAN

CEAN? (Comprehensive Erlang Archive Network) is a repository that hosts binary packages
from many Erlang programs, including ejabberd and all its dependencies. The binaries are
available for many different system architectures, so this is an alternative to the binary installer
and Operating System’s ejabberd packages.

You will have to create your own ejabberd start script depending of how you handle your CEAN
installation. The default ejabberdctl script is located into ejabberd’s priv directory and can
be used as an example.

2.4 Installing ejabberd from Source Code

The canonical form for distribution of ejabberd stable releases is the source code package.
Compiling ejabberd from source code is quite easy in *nix systems, as long as your system have
all the dependencies.

Thttp://www.microsoft.com/
2http://cean.process-one.net/

http://www.microsoft.com/
http://cean.process-one.net/

2.4 Installing ejabberd from Source Code 15

2.4.1 Requirements

To compile ejabberd on a ‘Unix-like’ operating system, you need:

e GNU Make

e GCC

e Libexpat 1.95 or higher

e Erlang/OTP R10B-9 or higher. The recommended versions are R12B-5 and R13B04.

e OpenSSL 0.9.8 or higher, for STARTTLS, SASL and SSL encryption.

e Zlib 1.2.3 or higher, for Stream Compression support (XEP-0138%). Optional.

e Erlang mysql library. Optional. For MySQL authentication or storage. See section 3.2.1.

e FErlang pgsql library. Optional. For PostgreSQL authentication or storage. See section
3.2.3.

e PAM library. Optional. For Pluggable Authentication Modules (PAM). See section 3.1.4.

e GNU Iconv 1.8 or higher, for the IRC Transport (mod-irc). Optional. Not needed on
systems with GNU Libc. See section 3.3.8.

e ImageMagick’s Convert program. Optional. For CAPTCHA challenges. See section 3.1.8.

e exmpp 0.9.2 or higher. Optional. For import/export user data with XEP-0227* XML files.

2.4.2 Download Source Code

Released versions of ejabberd are available in the ProcessOne e jabberd downloads page: http://www.process-one.net/

Alternatively, the latest development source code can be retrieved from the Git repository using
the commands:

git clone git://git.process-one.net/ejabberd/mainline.git ejabberd
cd ejabberd
git checkout -b 2.1.x origin/2.1.x

3http://xmpp.org/extensions/xep-0138.html
4http://xmpp.org/extensions/xep-0227 . html

http://www.process-one.net/en/ejabberd/downloads
http://xmpp.org/extensions/xep-0138.html
http://xmpp.org/extensions/xep-0227.html

16 2. Installing ejabberd

2.4.3 Compile

To compile ejabberd execute the commands:

./configure
make

The build configuration script allows several options. To get the full list run the command:
./configure --help

Some options that you may be interested in modifying:

—-prefix=/ Specify the path prefix where the files will be copied when running the make

install command.

--enable-user [=USER] Allow this normal system user to execute the ejabberdctl script (see
section 4.1), read the configuration files, read and write in the spool directory, read and
write in the log directory. The account user and group must exist in the machine before
running make install. This account doesn’t need an explicit HOME directory, because
/var/lib/ejabberd/ will be used by default.

--enable-pam Enable the PAM authentication method (see section 3.1.4).

--enable-odbc or --enable-mssql Required if you want to use an external database. See
section 3.2 for more information.

--enable-full-xml Enable the use of XML based optimisations. It will for example use CDATA
to escape characters in the XMPP stream. Use this option only if you are sure your XMPP
clients include a fully compliant XML parser.

--disable-transient-supervisors Disable the use of Erlang/OTP supervision for transient
processes.

--enable-nif Replaces some critical Erlang functions with equivalents written in C to improve
performance. This feature requires Erlang/OTP R13B04 or higher.

2.4.4 Install

To install ejabberd in the destination directories, run the command:
make install

Note that you probably need administrative privileges in the system to install e jabberd.

The files and directories created are, by default:

2.4 Installing ejabberd from Source Code 17

/etc/ejabberd/ Configuration directory:

ejabberd.cfg ejabberd configuration file
ejabberdctl.cfg Configuration file of the administration script

inetrc Network DNS configuration file

/lib/ejabberd/ ebin/ Erlang binary files (*.beam)
include/ Erlang header files (*.hrl)
priv/ Additional files required at runtime

bin/ Executable programs
lib/ Binary system libraries (*.s0)
msgs/ Translation files (*.msgs)

/sbin/ejabberdctl Administration script (see section 4.1)
/share/doc/ejabberd/ Documentation of ejabberd
/var/lib/ejabberd/ Spool directory:

.erlang.cookie Erlang cookie file (see section 5.3)
acl.DCD, ... Mnesia database spool files (*.DCD, *.DCL, *.DAT)

/var/log/ejabberd/ Log directory (see section 7.1):

ejabberd.log ejabberd service log
erlang.log Erlang/OTP system log

2.4.5 Start

You can use the ejabberdctl command line administration script to start and stop ejabberd. If
you provided the configure option --enable-user=USER (see 2.4.3), you can execute e jabberdctl
with either that system account or root.

Usage example:

ejabberdctl start

ejabberdctl status
The node ejabberd@localhost is started with status: started
ejabberd is running in that node

ejabberdctl stop

If ejabberd doesn’t start correctly and a crash dump is generated, there was a severe problem.
You can try starting ejabberd with the command ejabberdctl live to see the error message
provided by Erlang and can identify what is exactly the problem.

18 2. Installing ejabberd

Please refer to the section 4.1 for details about ejabberdctl, and configurable options to fine
tune the Erlang runtime system.

If you want ejabberd to be started as daemon at boot time, copy ejabberd.init to something like
/etc/init.d/ejabberd (depending on your distribution). Create a system user called ejabberd;
it will be used by the script to start the server. Then you can call /etc/inid.d/ejabberd start
as root to start the server.

2.4.6 Specific Notes for BSD

The command to compile ejabberd in BSD systems is:

gmake

2.4.7 Specific Notes for Sun Solaris

You need to have GNU install, but it isn’t included in Solaris. It can be easily installed if your
Solaris system is set up for blastwave.org® package repository. Make sure /opt/csw/bin is in
your PATH and run:

pkg-get -i fileutils

If that program is called ginstall, modify the ejabberd Makefile script to suit your system,
for example:

cat Makefile | sed s/install/ginstall/ > Makefile.gi
And finally install ejabberd with:

gmake -f Makefile.gi ginstall

2.4.8 Specific Notes for Microsoft Windows
Requirements

To compile ejabberd on a Microsoft Windows system, you need:

e MS Visual C++ 6.0 Compiler
e Erlang/OTP R11B-5°

Shttp://www.blastwave.org/
Shttp://www.erlang.org/download.html

http://www.blastwave.org/
http://www.erlang.org/download.html

2.4 Installing ejabberd from Source Code 19

Expat 2.0.0 or higher”

e GNU Iconv 1.9.2% (optional)

Shining Light OpenSSL 0.9.8d or higher? (to enable SSL connections)

Zlib 1.2.3 or higher!®

Compilation

We assume that we will try to put as much library as possible into C:\sdk\ to make it easier to
track what is install for ejabberd.

1. Install Erlang emulator (for example, into C:\sdk\erl5.5.5).

2. Install Expat library into C:\sdk\Expat-2.0.0 directory.

Copy file C:\sdk\Expat-2.0.0\Libs\libexpat.dll to your Windows system directory
(for example, C:\WINNT or C:\WINNT\System32)

3. Build and install the Iconv library into the directory C:\sdk\GnuWin32.

Copy file C:\sdk\GnuWin32\bin\1lib*.d1l1l to your Windows system directory (more in-
stallation instructions can be found in the file README.woe32 in the iconv distribution).

Note: instead of copying libexpat.dll and iconv.dll to the Windows directory, you can
add the directories C:\sdk\Expat-2.0.0\Libs and C:\sdk\GnuWin32\bin to the PATH
environment variable.

4. Install OpenSSL in C:\sdk\OpenSSL and add C:\sdk\OpenSSL\1ib\VC to your path or
copy the binaries to your system directory.

5. Install ZLib in C:\sdk\gnuWin32. Copy C:\sdk\GnuWin32\bin\zlib1l.d11 to your system
directory. If you change your path it should already be set after libiconv install.

6. Make sure the you can access Erlang binaries from your path. For example: set PATH=/,PATH%;"C:\sdk\erl5.6.5\t

7. Depending on how you end up actually installing the library you might need to check and
tweak the paths in the file configure.erl.

8. While in the directory ejabberd\src run:

configure.bat
nmake -f Makefile.win32

9. Edit the file ejabberd\src\ejabberd.cfg and run

werl -s ejabberd -name ejabberd

"http://sourceforge.net/project/showfiles.php?group_id=10127&package id=11277
8http://www.gnu.org/software/libiconv/
9http://wuw.slproweb.com/products/Win320penSSL. html

Ohttp://wuw.zlib.net/

http://sourceforge.net/project/showfiles.php?group_id=10127\&package_id=11277
http://www.gnu.org/software/libiconv/
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.zlib.net/

20 2. Installing ejabberd

2.5 Create a XMPP Account for Administration

You need a XMPP account and grant him administrative privileges to enter the ejabberd Web
Admin:

1. Register a XMPP account on your ejabberd server, for example adminl@example.org.
There are two ways to register a XMPP account:

(a) Using ejabberdctl (see section 4.1):
ejabberdctl register adminl example.org FgT5bk3
(b) Using a XMPP client and In-Band Registration (see section 3.3.18).

2. Edit the ejabberd configuration file to give administration rights to the XMPP account
you created:

{acl, admins, {user, "adminl", "example.org"}}.
{access, configure, [{allow, admins}]}.

You can grant administrative privileges to many XMPP accounts, and also to accounts in
other XMPP servers.

3. Restart ejabberd to load the new configuration.

4. Open the Web Admin (http://server:port/admin/) in your favourite browser. Make
sure to enter the full JID as username (in this example: adminl@example.org. The reason
that you also need to enter the suffix, is because ejabberd’s virtual hosting support.

2.6 Upgrading ejabberd

To upgrade an ejabberd installation to a new version, simply uninstall the old version, and then
install the new one. Of course, it is important that the configuration file and Mnesia database
spool directory are not removed.

ejabberd automatically updates the Mnesia table definitions at startup when needed. If you
also use an external database for storage of some modules, check if the release notes of the new
ejabberd version indicates you need to also update those tables.

Chapter 3

Configuring ejabberd

3.1 Basic Configuration

The configuration file will be loaded the first time you start ejabberd. The content from this
file will be parsed and stored in the internal e jabberd database. Subsequently the configuration
will be loaded from the database and any commands in the configuration file are appended to
the entries in the database.

Note that ejabberd never edits the configuration file. So, the configuration changes done using
the Web Admin are stored in the database, but are not reflected in the configuration file. If you
want those changes to be use after ejabberd restart, you can either edit the configuration file,
or remove all its content.

The configuration file contains a sequence of Erlang terms. Lines beginning with a ‘%’ sign are
ignored. Each term is a tuple of which the first element is the name of an option, and any further
elements are that option’s values. If the configuration file do not contain for instance the ‘hosts’
option, the old host name(s) stored in the database will be used.

You can override the old values stored in the database by adding next lines to the beginning of
the configuration file:

override_global.
override_local.
override_acls.

With these lines the old global options (shared between all ejabberd nodes in a cluster), local

options (which are specific for this particular ejabberd node) and ACLs will be removed before
new ones are added.

3.1.1 Host Names

The option hosts defines a list containing one or more domains that ejabberd will serve.

21

22 3. Configuring ejabberd

The syntax is:
{hosts, [HostName, ...]}.
Examples:

e Serving one domain:
{hosts, ["example.org"l}.
e Serving three domains:

{hosts, ["example.net", "example.com", "jabber.somesite.org"l}.

3.1.2 Virtual Hosting

Options can be defined separately for every virtual host using the host_config option.
The syntax is:
{host_config, HostName, [Option, ...]}

Examples:

e Domain example.net is using the internal authentication method while domain example.com
is using the LDAP server running on the domain localhost to perform authentication:

{host_config, "example.net", [{auth_method, internall}]}.

{host_config, "example.com", [{auth_method, ldap},
{ldap_servers, ["localhost"l},

{ldap_uids, [({"uid"}13},
{1dap_rootdn, "dc=localdomain"},
{1dap_rootdn, "dc=example,dc=com"},

{ldap_password, ""}1}.

e Domain example.net is using ODBC to perform authentication while domain example.com
is using the LDAP servers running on the domains localhost and otherhost:

{host_config, "example.net", [{auth_method, odbc},
{odbc_server, "DSN=ejabberd;UID=ejabberd;PWD=ejabberd"}]}.

{host_config, "example.com", [{auth_method, ldap},

{ldap_servers, ["localhost", "otherhost"]},
{1dap_uids, [{"uid"}]},

{1dap_rootdn, "dc=localdomain"},
{1dap_rootdn, "dc=example,dc=com"},

{ldap_password, ""}1}.

3.1 Basic Configuration 23

To define specific ejabberd modules in a virtual host, you can define the global modules option
with the common modules, and later add specific modules to certain virtual hosts. To accomplish
that, instead of defining each option in host_config with the general syntax

{OptionName, OptionValue}

use this syntax:

{{add, OptionName}, OptionValue}

In this example three virtual hosts have some similar modules, but there are also other different
modules for some specific virtual hosts:

%% This ejabberd server has three vhosts:
{hosts, ["one.example.org", "two.example.org", "three.example.org"]}.

%% Configuration of modules that are common to all vhosts

{modules,
[
{mod_roster, (13,
{mod_configure, [1},
{mod_disco, (1},
{mod_private, (11,
{mod_time, (13,
{mod_last, (13,
{mod_version, N
1r.

%% Add some modules to vhost one:
{host_config, "one.example.org",
[{{add, modules}, [

{mod_echo, [{host, "echo-service.one.example.org"}]}
{mod_http_bind, [13},
{mod_logxml, 13
]
}
1.

%% Add a module just to vhost two:
{host_config, "two.example.org",
[{{add, modules}, [
{mod_echo, [{host, "mirror.two.example.org"}]}

]

24 3. Configuring ejabberd

3.1.3 Listening Ports

The option listen defines for which ports, addresses and network protocols ejabberd will listen
and what services will be run on them. Each element of the list is a tuple with the following
elements:

e Port number. Optionally also the IP address and/or a transport protocol.
e Listening module that serves this port.

e Options for the TCP socket and for the listening module.
The option syntax is:
{listen, [Listener, ...]}.
To define a listener there are several syntax.

{PortNumber, Module, [Option, ...]}
{{PortNumber, IPaddress}, Module, [Option, ...]}
{{PortNumber, TransportProtocol}, Module, [Option, ...]}

{{PortNumber, IPaddress, TransportProtocol}, Module, [Option, ...]}

Port Number, IP Address and Transport Protocol

The port number defines which port to listen for incoming connections. It can be a Jabber/XMPP
standard port (see section 5.1) or any other valid port number.

The IP address can be represented with a string or an Erlang tuple with decimal or hexadecimal
numbers. The socket will listen only in that network interface. It is possible to specify a generic
address, so ejabberd will listen in all addresses. Depending in the type of the IP address, IPv4
or IPv6 will be used. When not specified the IP address, it will listen on all IPv4 network
addresses.

Some example values for IP address:
e "0.0.0.0" to listen in all IPv4 network interfaces. This is the default value when no IP is
specified.
e "::" to listen in all IPv6 network interfaces

e "10.11.12.13" is the IPv4 address 10.11.12.13

3.1 Basic Configuration 25

e "::FFFF:127.0.0.1" is the IPv6 address : :FFFF:127.0.0.1/128

e {10, 11, 12, 13} is the IPv4 address 10.11.12.13

{0, 0, 0, 0, O, 65535, 32512, 1} is the IPv6 address : :FFFF:127.0.0.1/128

{16#fdca, 16#8ab6, 16#a243, 16#75ef, 0, 0, 0, 1}istheIPv6 address FDCA:8AB6:A243:75EF::1/128

The transport protocol can be tcp or udp. Default is tcp.

Listening Module
The available modules, their purpose and the options allowed by each one are:

ejabberd_c2s Handles c2s connections.
Options: access, certfile, max_fsm queue, max_stanza_size, shaper, starttls, starttls_required,
tls, z1ib

ejabberd_s2s_in Handles incoming s2s connections.
Options: max_stanza_size, shaper

ejabberd_service Interacts with an external component! (as defined in the Jabber Component
Protocol (XEP-0114%).
Options: access, hosts, max_fsm_queue, service_check from, shaper

ejabberd_stun Handles STUN Binding requests as defined in RFC 53893,
Options: certfile

ejabberd_http Handles incoming HTTP connections.
Options: captcha, certfile, http_bind, http_poll, request_handlers, tls, web_admin

Options
This is a detailed description of each option allowed by the listening modules:

{access, AccessName} This option defines access to the port. The default value is all.

{backlog, Value} The backlog value defines the maximum length that the queue of pending
connections may grow to. This should be increased if the server is going to handle lots of
new incoming connections as they may be dropped if there is no space in the queue (and
ejabberd was not able to accept them immediately). Default value is 5.

captcha Simple web page that allows a user to fill a CAPTCHA challenge (see section 3.1.8).

{certfile, Path} Full path to a file containing the default SSL certificate. To define a certifi-
cate file specific for a given domain, use the global option domain certfile.

Thttp://www.ejabberd.im/tutorials—transports
’http://xmpp.org/extensions/xep-0114.html
3http://tools.ietf.org/html/rfc5389

http://www.ejabberd.im/tutorials-transports
http://xmpp.org/extensions/xep-0114.html
http://tools.ietf.org/html/rfc5389

26 3. Configuring ejabberd

{hosts, [Hostname, ...], [HostOption, ...]} The external Jabber component that con-
nects to this ejabberd_service can serve one or more hostnames. As HostOption you
can define options for the component; currently the only allowed option is the password
required to the component when attempt to connect to ejabberd: {password, Secret}.
Note that you cannot define in a single e jabberd_service components of different services:
add an ejabberd_service for each service, as seen in an example below.

http_bind This option enables HTTP Binding (XEP-0124% and XEP-0206°) support. HTTP
Bind enables access via HTTP requests to ejabberd from behind firewalls which do not
allow outgoing sockets on port 5222.

Remember that you must also install and enable the module mod_http_bind.

If HTTP Bind is enabled, it will be available at http://server:port/http-bind/. Be
aware that support for HTTP Bind is also needed in the XMPP client. Remark also
that HTTP Bind can be interesting to host a web-based XMPP client such as JWChat
(check the tutorials to install JWChat with ejabberd and an embedded local web server”
or Apache®).

http_poll This option enables HTTP Polling (XEP-0025%) support. HTTP Polling enables
access via HTTP requests to ejabberd from behind firewalls which do not allow outgoing
sockets on port 5222.

If HTTP Polling is enabled, it will be available at http://server:port/http-poll/. Be
aware that support for HT'TP Polling is also needed in the XMPP client. Remark also that
HTTP Polling can be interesting to host a web-based XMPP client such as JWChat!©.

The maximum period of time to keep a client session active without an incoming POST
request can be configured with the global option http_poll_timeout. The default value is
five minutes. The option can be defined in ejabberd.cfg, expressing the time in seconds:
{http_poll_timeout, 300%}.

{max_fsm_queue, Sizel} This option specifies the maximum number of elements in the queue of
the FSM (Finite State Machine). Roughly speaking, each message in such queues represents
one XML stanza queued to be sent into its relevant outgoing stream. If queue size reaches
the limit (because, for example, the receiver of stanzas is too slow), the FSM and the
corresponding connection (if any) will be terminated and error message will be logged.
The reasonable value for this option depends on your hardware configuration. However,
there is no much sense to set the size above 1000 elements. This option can be specified for
ejabberd_service and ejabberd_c2s listeners, or also globally for ejabberd_s2s_out. If
the option is not specified for ejabberd_service or ejabberd_c2s listeners, the globally
configured value is used. The allowed values are integers and 'undefined’. Default value:
‘undefined’.

{max_stanza size, Size} This option specifies an approximate maximum size in bytes of XML
stanzas. Approximate, because it is calculated with the precision of one block of read data.
For example {max_stanza_size, 65536}. The default value is infinity. Recommended

“http://xmpp.org/extensions/xep-0124.html
Shttp://xmpp.org/extensions/xep-0206.html
Shttp://jwchat.sourceforge.net/
Thttp://www.ejabberd.im/jwchat-localserver
8http://www.ejabberd.im/jwchat-apache
9http://xmpp.org/extensions/xep-0025.html
1O0http://juchat.sourceforge.net/

http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0206.html
http://jwchat.sourceforge.net/
http://www.ejabberd.im/jwchat-localserver
http://www.ejabberd.im/jwchat-apache
http://xmpp.org/extensions/xep-0025.html
http://jwchat.sourceforge.net/

3.1 Basic Configuration 27

values are 65536 for ¢2s connections and 131072 for s2s connections. s2s max stanza size
must always much higher than ¢2s limit. Change this value with extreme care as it can
cause unwanted disconnect if set too low.

{request_handlers, [{Path, Module}, ...]1} To define one or several handlers that will
serve HT'TP requests. The Path is a list of strings; so the URIs that start with that Path will
be served by Module. For example, if you want mod_foo to serve the URIs that start with
/a/b/, and you also want mod_http_bind to serve the URIs /http-bind/, use this option:
{request_handlers, [{["a", "b"], mod_foo}, {["http-bind"], mod http bind}]}

{service_check_from, truel|false} This option can be used with ejabberd_service only.
XEP-0114'"! requires that the domain must match the hostname of the component. If
this option is set to false, ejabberd will allow the component to send stanzas with any
arbitrary domain in the 'from’ attribute. Only use this option if you are completely sure
about it. The default value is true, to be compliant with XEP-0114'2,

{shaper, none|ShaperName} This option defines a shaper for the port (see section 3.1.6). The
default value is none.

starttls This option specifies that STARTTLS encryption is available on connections to the
port. You should also set the certfile option. You can define a certificate file for a specific
domain using the global option domain certfile.

starttls_required This option specifies that STARTTLS encryption is required on connections
to the port. No unencrypted connections will be allowed. You should also set the certfile
option. You can define a certificate file for a specific domain using the global option
domain_certfile.

tls This option specifies that traffic on the port will be encrypted using SSL immediately after
connecting. This was the traditional encryption method in the early Jabber software,
commonly on port 5223 for client-to-server communications. But this method is nowadays
deprecated and not recommended. The preferable encryption method is STARTTLS on
port 5222, as defined RFC 3920: XMPP Core'3, which can be enabled in ejabberd with
the option starttls. If this option is set, you should also set the certfile option. The
option tls can also be used in ejabberd http to support HTTPS.

web_admin This option enables the Web Admin for ejabberd administration which is available
at http://server:port/admin/. Login and password are the username and password of
one of the registered users who are granted access by the ‘configure’ access rule.

z1ib This option specifies that Zlib stream compression (as defined in XEP-0138!%) is available

on connections to the port.

There are some additional global options that can be specified in the ejabberd configuration file
(outside listen):

{s2s_use_starttls, truel|false} This option defines whether to use STARTTLS for s2s con-
nections.

Uhttp://xmpp.org/extensions/xep-0114.html
2nttp://xmpp.org/extensions/xep-0114.html
Bhttp://xmpp.org/rfcs/rfc3920.html#tls

Mhttp://xmpp.org/extensions/xep-0138.html

http://xmpp.org/extensions/xep-0114.html
http://xmpp.org/extensions/xep-0114.html
http://xmpp.org/rfcs/rfc3920.html#tls
http://xmpp.org/extensions/xep-0138.html

28 3. Configuring ejabberd

{s2s_certfile, Path} Full path to a file containing a SSL certificate.

{domain_certfile, Domain, Path} Full path to the file containing the SSL certificate for a
specific domain.

{outgoing s2s_options, Methods, Timeout} Specify which address families to try, in what
order, and connect timeout in milliseconds. By default it first tries connecting with 1Pv4,
if that fails it tries using [Pv6, with a timeout of 10000 milliseconds.

{s2s_dns_options, [{Property, Value}, ...]} Define properties to use for DNS resolving.
Allowed Properties are: timeout in seconds which default value is 10 and retries which
default value is 2.

{s2s_default_policy, allowldeny} The default policy for incoming and outgoing s2s connec-
tions to other XMPP servers. The default value is allow.

{{s2s_host, Host}, allowl|deny} Defines if incoming and outgoing s2s connections with a
specific remote host are allowed or denied. This allows to restrict ejabberd to only establish
s2s connections with a small list of trusted servers, or to block some specific servers.

{s2s_max retry_delay, Seconds} The maximum allowed delay for retry to connect after a
failed connection attempt. Specified in seconds. The default value is 300 seconds (5 min-
utes).

{max_fsm_queue, Size} This option specifies the maximum number of elements in the queue of
the FSM (Finite State Machine). Roughly speaking, each message in such queues represents
one XML stanza queued to be sent into its relevant outgoing stream. If queue size reaches
the limit (because, for example, the receiver of stanzas is too slow), the FSM and the
corresponding connection (if any) will be terminated and error message will be logged.
The reasonable value for this option depends on your hardware configuration. However,
there is no much sense to set the size above 1000 elements. This option can be specified for
ejabberd_service and ejabberd_c2s listeners, or also globally for ejabberd_s2s_out. If
the option is not specified for ejabberd_service or ejabberd_c2s listeners, the globally
configured value is used. The allowed values are integers and 'undefined’. Default value:
‘undefined’.

{route_subdomains, locall|s2s} Defines if ejabberd must route stanzas directed to subdo-
mains locally (compliant with RFC 3920: XMPP Core!®), or to foreign server using S2S
(compliant with RFC 3920 bis'®).

Examples
For example, the following simple configuration defines:

e There are three domains. The default certificate file is server.pem. However, the ¢2s and
s2s connections to the domain example.com use the file example_com.pem.

e Port 5222 listens for ¢2s connections with STARTTLS, and also allows plain connections
for old clients.

5http://xmpp.org/rfcs/rfc3920. html#rules. subdomain
6nttp://tools.ietf.org/html/draft-saintandre-rfc3920bis-09#section-11.3

http://xmpp.org/rfcs/rfc3920.html#rules.subdomain
http://tools.ietf.org/html/draft-saintandre-rfc3920bis-09#section-11.3

3.1 Basic Configuration 29

e Port 5223 listens for ¢2s connections with the old SSL.

e Port 5269 listens for s2s connections with STARTTLS. The socket is set for IPv6 instead
of IPv4.

e Port 3478 listens for STUN requests over UDP.
e Port 5280 listens for HTTP requests, and serves the HTTP Poll service.

e Port 5281 listens for HT'TP requests, and serves the Web Admin using HTTPS as explained
in section 4.3. The socket only listens co