
Bacula Storage Management System

The Bacula
®

 Storage Management System Version
1.32

It comes by night and sucks the vital essence from your
computers

This document was last updated 29 October 2003.

If you are viewing this document with Netscape, it probably looks really poor.
I recommend that you use Galeon or Mozilla instead.

General Documents

1.0 What is Bacula?•
2.0 What Is and What Is Not Implemented•
3.0 Quick Start Guide to Bacula•

3.1 Supported Operating Systems♦
3.2 Supported Tape Drives♦
3.3 Unsupported Tape Drives♦
13.1 Supported Autochanger Models♦

4.0 Compiling and Installing Bacula•

4.1 Dependency Packages♦
4.2 Building from Source♦
4.3 What Database to Use♦
4.4 Configure Options♦

5.0 Customizing Bacula Configuration Files•

5.0.1 Resource Record Format♦
5.0.2 Comments♦
5.0.3 Upper and Lower Case and Space♦
5.0.4 Data Types♦
5.0.5q Resource Types♦
5.1 Director Configuration Resources♦

5.1.1 Catalog Resource◊
5.1.2 Client Resource◊
5.1.3 Counter Resource◊
5.1.4 Director Resource◊
5.1.5 FileSet Resource◊
5.1.6 Job Resource◊
5.1.7 Messages Resource◊
5.1.8 Pool Resource◊
5.1.9 Schedule Resource◊
5.1.10 Storage Resource◊
5.1.11 Sample Director Configuration File◊

5.2 Client/File Daemon Configuration Resources♦

The Bacula® Storage Management System Version 1.32 1

http://galeon.sourceforge.net
http://www.mozilla.org

5.2.1 Client Resource◊
5.2.2 Director Resource◊
5.2.3 Messages Resource◊
5.2.4 Sample Client Configuration File◊

5.3 Storage Daemon Configuration Resources♦

5.3.1 Storage Resource◊
5.3.2 Director Resource◊
5.3.3 Device Resource◊
5.3.4 Messages Resource◊
5.3.5 Sample Storage Configuration File◊

5.4 Console Configuration Resources♦

5.4.1 Director Resource◊
5.4.2 Sample Console Configuration File◊

5.5 Variable Expansion♦
6.0 Running Bacula•

6.1 Starting the Database♦
6.2 Starting the Daemons♦
6.3 Creating a Pool♦
6.4 Labeling Your Volumes♦
6.5 Running a Job♦
6.6 Adding a Second Client♦
6.7 What To Do When The Tape Fills♦

7.0 Running Bacula from the Console Program•

7.1 Alphabetic List of Console Commands♦
7.2 List of Dot commands♦
7.3 List of At (@) commands♦
7.4 Running the Console from a Shell Script♦

8.0 Restoring Files•

8.1 General♦
8.2 Interactive Restore Example♦
8.3 Command Line Arguments♦
8.4 Restoring on Windows♦
8.5 File Selection Command♦

9.0 Disaster Recovery Using Bacula•
10.0 Maintaining your Catalog•

10.1 Setting Retention Periods♦
10.2 Compacting Your MySQL Database♦
10.3 Compacting Your SQLite Database♦
10.4 Backing Up Your Bacula Database♦
10.5 Backing Up Third Party Databases♦
10.6 Database Size♦

11.0 Recycling your Volumes•

11.1 Automatic Recycling Tapes♦
11.2 Automatic Pruning♦

Bacula Storage Management System

The Bacula® Storage Management System Version 1.32 2

11.3 Recycling Algorithm♦
11.4 Making Bacula Use a Single Tape♦
11.5 A Daily, Weekly, Monthly Tape Usage Example♦
11.6 Automatic Pruning and Recycling Example♦
11.7 Manually Recycling Tapes♦

12.0 Backing Up to Disk Volumes•

11.1 Key Concepts and Resource Records♦
11.2 Automatic Volume Labeling♦
11.3 Restricting Volumes and Recycling♦
11.4 An Example Conf File♦
11.5 Considerations for Multiple Clients♦

13.0 Backup Strategies•

13.1 Simple One Tape Backup♦
13.2 Manually Changing Tapes♦
13.3 Daily Tape Rotation♦

14.0 Autochanger Support in Bacula•

14.1 Supported Autochanger Models♦
14.2 Testing the Autochanger and Adapting Your mtx−changer Script♦

15.0 Tips and Suggestions for Managing Bacula•

15.1 Upgrading Bacula Versions♦
15.2 Getting Notified of Job Completion♦
15.3 Getting Email Notification to Work♦
15.4 Maintaining a Valid Bootstrap File♦
15.5 Rejected Volumes After a Crash♦
15.6 Security Considerations♦
15.7 Creating Holiday Schedules♦
15.8 Automatic Labeling Using Your Autochanger♦
15.9 Keep Your Client Machines' Clocks Synchronized to the Director♦
15.10 Backing Up Portables Using DHCP♦
15.11 Going on Vacation♦
15.12 How to Exclude Files on Windows Regardless of Case♦
15.13 Executing Scripts on a Remote Machine♦

16.0 Bacula Utility Programs•

16.1 bls −− Listing the Contents of a Volume♦
16.2 bextract −− Extracting Files from a Volume♦
16.3 bscan −− Recreating a Database from a Volume♦
16.4 bcopy −− Copy an Archive from one Volume to Another♦
16.5 btape −− Testing Your Tape Drive♦
16.6 smtp −− Customizing Your Email Messages♦
16.7 dbcheck −− Run a Consistency Check on Your Database♦
16.8 testfind −− Test Run the Include Find Algorithm♦

17.0 Testing Your Tape Drive With Bacula•
18.0 What To Do When Bacula Crashes (Kaboom)•
19.0 The Windows Version of Bacula•

19.1 Installation♦

Bacula Storage Management System

The Bacula® Storage Management System Version 1.32 3

19.2 Upgrading♦
19.3 Problems♦
19.4 Compatibility Considerations♦

20.0 Using Bacula to Improve Computer Security•
21.0 The Bootstrap File Format•
22.0 Installing and Configuring MySQL•
23.0 Installing and Configuring SQLite•
24.0 Installing and Configuring the Internal Database•
25.0 Bacula Copyright and Licenses•

25.1 GPL♦
25.1 LGPL♦

Other Notes

Frequently Asked Questions
Authorization Errors♦
Access Problems♦

•

Bacula Projects•
Security Issues•
Thanks and Acknowledgments•

Bugs

Bugs•

Bacula Design Documents

Director Services Design•
Storage Services Design•
File Services Design•
Catalog Services Design•
Internal Component Design Documents

Developer Notes♦
Porting Notes♦
Regression Testing♦
Bacula GUI Interface♦
Intra−daemon Protocols♦
Storage Media Format♦
Memory Management Design♦
Bacula Network Protocol♦
Our MD5 Algorithm♦
Smart Memory Allocation Routines♦

•

Bacula® is a registered trademark of Kern Sibbald and John Walker.

Copyright (C) 2000−2003 Kern Sibbald and John Walker.

Bacula source code is released under the GNU General Public License version 2.

Bacula Storage Management System

Other Notes 4

The use of the name Bacula is restricted to software systems that agree exactly with the program presented
here.

Bacula 1.32 User's Guide Chapter 1

Index Features

Bacula Storage Management System

Other Notes 5

What is Bacula?
Bacula is a set of computer programs that permit you (or the system administrator) to manage
backup, recovery, and verification of computer data across a network of computers of different
kinds. In technical terms, it is a network Client/Server based backup program. Bacula is
relatively easy to use and efficient, while offering many advanced storage management features
that make it easy to find and recover lost or damaged files. Due to its modular design, Bacula is
scalable from small single computer systems to systems consisting of hundreds of computers
located over a large network.

Who Needs Bacula?

If you are currently using a program such as tar, dump, or bru to backup your computer data,
and you would like a network solution, more flexibility, or catalog services, Bacula will most
likely provide the additional features you want. However, if you are new to Unix systems or do
not have offsetting experience with a sophisticated backup package, we do not recommend using
Bacula as it is much more difficult to setup and use than tar or dump.

If you are running Amanda and would like a backup program that can write to multiple volumes
(i.e. is not limited by your tape drive capacity), Bacula can most likely fill your needs. In
addition, quite a number of our users report that Bacula is simpler to setup and use than other
equivalent programs.

If you are currently using a sophisticated commercial package such as Legato Networker.
ARCserveIT, Arkeia, or PerfectBackup+, you may be interested in Bacula, which provides many
of the same features, and is free software available under the GNU Version 2 software license.

Bacula Components or Services

Bacula is made up of the following five major components or services:

Bacula Director service consists of the program that supervises all the backup, restore,
verify and archive operations. The system administrator uses the Bacula Director to
schedule backups and to recover files. For more details see the Director Services
Daemon Design Document. The Director runs as a daemon or a service (i.e. in the
background).

•

Bacula Console services is the program that allows the administrator or user to
communicate with the Bacula Director (see above). Currently, the Bacula Console is
available in two versions. The first and simplest is to run the Console program in a shell
window (i.e. TTY interface). Most system administrators will find this completely
adequate. The second version is a GNOME GUI interface that for the moment (26
December 2002) is far from complete, but quite functional as it has all the capabilities of
the shell Console. For more details see the Bacula Console Design Document.

•

Bacula File services (or Client program) is the software program that is installed on the
machine to be backed up. It is specific to the operating system on which it runs and is
responsible for providing the file attributes and data when requested by the Director. The
File services are also responsible for the file system dependent part of restoring the file
attributes and data during a recovery operation. For more details see the File Services
Daemon Design Document. This program runs as a daemon on the machine to be backed
up, and in some of the documentation, the File daemon is referred to as the Client (for

•

What is Bacula? 6

example in Bacula's configuration file). In addition to Unix/Linux File daemons, there is
a Windows File daemon (normally distributed as in binary format). The Windows File
daemon runs on all currently known Windows versions (95, 98, Me, NT, 2000, XP).
Bacula Storage services consist of the software programs that perform the storage and
recovery of the file attributes and data to the physical backup media or volumes. In other
words, the Storage daemon is responsible for reading and writing your tapes (or other
storage media, e.g. files). For more details see the Storage Services Daemon Design
Document. The Storage services runs as a daemon on the machine that has the backup
device (usually a tape drive).

•

Catalog services are comprised of the software programs responsible for maintaining
the file indexes and volume databases for all files backed up. The Catalog services
permit the System Administrator or user to quickly locate and restore any desired file.
The Catalog services of Bacula set it apart from programs like tar and bru, since the
catalog maintains a record of all Volumes used, all Jobs run, and all Files saved. Bacula
currently supports two different databases, MySQL and SQLite, one of which must be
chosen when building Bacula. There also exists an Internal database, but it is no longer
supported.

•

The two SQL databases currently supported (MySQL or SQLite) provide quite a number
of features, including rapid indexing, arbitrary queries, and security. Although we plan to
support other major SQL databases, the current Bacula implementation interfaces only
to MySQL and SQLite. For more details see the Catalog Services Design Document.

The RPMs for MySQL ship as part of the Linux RedHat release, or building it from the
source is quite easy, see the Installing and Configuring MySQL chapter of this document
for the details. For more information on MySQL, please see: www.mysql.com.

Configuring and building SQLite is even easier. For the details of configuring SQLite,
please see the Installing and Configuring SQLite chapter of this document.

To perform a successful save or restore, the following four daemons must be configured and
running: the Director daemon, the File daemon, the Storage daemon, and MySQL or SQLite.

Conventions Used in this Document

Bacula is in a state of evolution, and as a consequence, this manual will not always agree with
the code. If an item in this manual is preceded by an asterisk (*), it indicates that the particular
feature is not implemented. If it is preceded by a plus sign (+), it indicates that the feature may be
partially implemented.

If you are reading this manual as supplied in a released version of the software, the above
paragraph holds true. If you are reading the online version of the manual,
www.bacula.org/manual, please bear in mind that this version describes the current version in
development (in the CVS) that may contain features not in the released version. Just the same, it
generally lags behind the code a bit.

Quick Start

To get Bacula up and running quickly, we recommend that you first scan the Terminology
section below, then quickly review the next chapter entitled The Current State of Bacula, then the

Bacula Storage Management System

Conventions Used in this Document 7

Quick Start Guide to Bacula, which will give you a quick overview of getting Bacula running.
After which, you should proceed to the chapter on Installing Bacula, then How to Configure
Bacula, and finally the chapter on Running Bacula.

Terminology

To facilitate communication about this project, we provide here the definitions of the
terminology that we use.

Administrator
The person or persons responsible for administrating the Bacula system.

Backup
We use the term Backup to refer to a Bacula Job that saves files.

Catalog
The Catalog is used to store summary information about the Jobs, Clients, and Files that
were backed up and on what Volume or Volumes. The information saved in the Catalog
permits the administrator or user to determine what jobs were run, their status as well as
the important characteristics of each file that was backed up. The Catalog is an online
resource, but does not contain the data for the files backed up. Most of the information
stored in the catalog is also stored on the backup volumes (i.e. tapes). Of course, the
tapes will also have a copy of the file in addition to the File Attributes (see below).
The catalog feature is one part of Bacula that distinguishes it from simple backup and
archive programs such as dump and tar.

Client
In Bacula's terminology, the word Client refers to the machine being backed up, and it is
synonymous with the File services or File daemon.

Console
The program that interfaces to the Director allowing the user or system administrator to
control Bacula.

Daemon
Unix terminology for a program that is always present in the background to carry out a
designated task. On Windows systems, as well as some Linux systems, daemons are
called Services.

Director
The main Bacula server daemon that schedules and directs all Bacula operations.

Differential
A backup that includes all files changed since the last Full save started. Note, other
backup programs may define this differently.

File Attributes
The File Attributes are all the information necessary about a file to identify it and all its
properties such as size, creation date, modification date, permissions, etc. Normally, the
attributes are handled entirely by Bacula so that the user never needs to be concerned
about them. The attributes do not include the file's data.

File Daemon
The daemon running on the client computer to be backed up. This is also referred to as
the File services, and sometimes as the Client services.

FileSet
Defines the files to be backed up. It consists of a list of included files or directories, a list
of excluded files, and how the file is to be stored (compression, encryption, signatures).
For more details, see the FileSet Resource definition in the Director chapter of this

Bacula Storage Management System

Terminology 8

document.
Incremental

A backup that includes all files changed since the last Full, Differential, or Incremental
backup started.

Job
A Bacula Job defines the work that Bacula must perform to backup or restore a particular
Client. It consists of the Type (backup, restore, verify, etc), the Level (full,
incremental,...), the FileSet, and Storage the files are to be backed up (Storage device,
Media Pool). For more details, see the Job Resource definition in the Director chapter of
this document.

Restore
A restore is the operation of recovering a file (lost or damaged) from a backup medium.
It is the inverse of a save, except that in most cases, a restore will normally have a small
set of files to restore, while normally a Save backs up all the files on the system. Of
course, after a disk crash, a Bacula can be called upon to do a full Restore of all files that
were on the system.

Schedule
Defines when the Bacula Job will be scheduled for execution. For more details, see the
Schedule Resource definition in the Director chapter of this document.

Service
This is Windows terminology for a daemon −− see above. It is now frequently used in
Unix environments as well.

Storage Coordinates
The information returned from the Storage Services that uniquely locates a file on a
backup medium. It consists of two parts: one part pertains to each file saved, and the
other part pertains to the whole Job. Normally, this information is saved in the Catalog
so that the user doesn't need specific knowledge of the Storage Coordinates. The Storage
Coordinates include the File Attributes (see above) plus the unique location of the
information on the backup Volume.

Session
Normally refers to the internal conversation between the File daemon and the Storage
daemon. The File daemon opens a session with the Storage daemon to save a FileSet, or
to restore it. A session has a one to one correspondence to a Bacula Job (see above).

Verify
A verify is a job that compares the current file attributes to the attributes that have
previously been stored in the Bacula Catalog. This feature can be used for detecting
changes to critical system files similar to what Tripwire does. One of the major
advantages of using Bacula to do this is that on the machine you want protected such as
a server, you can run just the File daemon, and the Director, Storage daemon, and
Catalog reside on a different machine. As a consequence, if your server is ever
compromised, it is unlikely that your verification database will be tampered with.
Verify can also be used to check that the most recent Job data written to a Volume agrees
with what is stored in the Catalog (i.e. it compares the file attributes), *or it can check
the Volume contents against the original files on disk.

*Archive
An Archive operation is done after a Save, and it consists of removing the Volumes on
which data is saved from active use. These Volumes are marked as Archived, and many
no longer be used to save files. All the files contained on an Archived Volume are
removed from the Catalog. NOT YET IMPLEMENTED.

*Update

Bacula Storage Management System

Terminology 9

An Update operation causes the files on the remote system to be updated to be the same
as the host system. This is equivalent to an rdist capability. NOT YET
IMPLEMENTED.

Retention Period
There are various kinds of retention periods that Bacula recognizes. The most important
are the File Retention Period, Job Retention Period, and the Volume Retention Period.
Each of these retention periods applies to the time that specific records will be kept in the
Catalog database. This should not be confused with the time that the data saved to a
Volume is valid.
The File Retention Period determines the time that File records are kept in the catalog
database. This period is important because the volume of the database File records by far
use the most storage space in the database. As a consequence, you must ensure that
regular "pruning" of the database file records are done. (See the Console retention
command for more details on this subject).

The Job Retention Period is the length of time that Job records will be kept in the
database. Note, all the File records are tied to the Job that saved those files. The File
records can be purged leaving the Job records. In this case, information will be available
about the jobs that ran, but not the details of the files that were backed up. Normally,
when a Job record is purged, all its File records will also be purged.

The Volume Retention Period is the minimum of time that a Volume will be kept before
it is reused. Bacula will normally never overwrite a Volume that contains the only
backup copy of a file. Under ideal conditions, the Catalog would retain entries for all
files backed up for all current Volumes. Once a Volume is overwritten, the files that
were backed up on that Volume are automatically removed from the Catalog. However,
if there is a very large pool of Volumes or a Volume is never overwritten, the Catalog
database may become enormous. To keep the Catalog to a manageable size, the backup
information should removed from the Catalog after the defined File Retention Period.
Bacula provides the mechanisms for the catalog to be automatically pruned according to
the retention periods defined.

Scan
A Scan operation causes the contents of a Volume or a series of Volumes to be scanned.
These Volumes with the information on which files they contain are restored to the
Bacula Catalog. Once the information is restored to the Catalog, the files contained on
those Volumes may be easily restored. This function is particularly useful if certain
Volumes or Jobs have gone past (that is their retention period and have been pruned or
purged from the Catalog. Scanning data from Volumes into the Catalog is done by using
the bscan program. See the bscan section of the Bacula Utilities Chapter of this manual
for more details.

Volume
A Volume is an archive unit, normally a tape of a named disk file where Bacula stores
the data from one or more backup job. All Bacula Volumes have a physical label written
by Bacula so that it can be sure what Volume it is really reading. (Normally there should
be no confusion with disk files, but with tapes, it is easy to mount the wrong one).

What Bacula is Not

Bacula is a backup, restore and verification program and is not a complete disaster recovery
system unless you plan carefully and follow the instructions included in the Disaster Recovery

Bacula Storage Management System

What Bacula is Not 10

Chapter of this manual.

With proper planning, as mentioned in the Disaster Recovery chapter Bacula can be used the key
component of your disaster recovery system. For example, if you have created an emergency
boot disk, a Bacula Rescue disk to save the current partitioning information of your hard disk,
and maintain a complete Bacula backup, it is possible to completely recover your system from
"bare metal".

If you have used the WriteBootstrap record in your job or some other means to save a valid
bootstrap file, you will be able to use it to extract the necessary files (without using the catalog or
manually searching for the files to restore).

Interactions Between the Bacula Services

The following block diagram shows the typical interactions between the Bacula Services for a
backup job. Each block represents in general a separate process (normally a daemon). In general,
the Director oversees the flow of information. It also maintains the Catalog.

Index Features

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula Storage Management System

Interactions Between the Bacula Services 11

http://www.bacula.org/

Bacula 1.32 User's Guide Chapter 2

Introduction Index Getting Started

Bacula Storage Management System

Interactions Between the Bacula Services 12

The Current State of Bacula
In other words, what is and what is not currently implemented and functional.

What is Implemented

Network backup/restore with centralized Director.•
Internal scheduler for automatic Job execution.•
Scheduling of multiple Jobs at the same time.•
You may run one Job at a time or multiple simultaneous Jobs.•
Job sequencing using priorities.•
Restore of one or more files selected interactively either for the current backup or a
backup prior to a specified time and date.

•

Restore of a complete system starting from bare metal. This is mostly automated for
Linux systems and partially automated for Solaris. See Disaster Recovery Using Bacula.

•

Listing and Restoration of files using stand−alone bls and bextract tool programs.
Among other things, this permits extraction of files when Bacula and/or the catalog are
not available.

•

Console interface to the Director allowing complete control. Both a shell and GNOME
GUI versions of the Console program are available. Note, the GNOME GUI program
currently offers very few additional features over the shell program.

•

Verification of files previously cataloged, permitting a Tripwire like capability (system
break−in detection).

•

CRAM−MD5 password authentication between each component (daemon).•
A comprehensive and extensible configuration file for each daemon.•
Catalog database facility for remembering Volumes, Pools, Jobs, and Files backed up.•
Support for SQLite and MySQL Catalog databases.•
User extensible queries to the SQLite and MySQL databases.•
Labeled Volumes, preventing accidental overwriting (at least by Bacula).•
Any number of Jobs and Clients can be backed up to a single Volume. That is, you can
backup and restore Linux, Unix, Sun, and Windows machines to the same Volume.

•

Multi−volume saves. When a Volume is full, Bacula automatically requests the next
Volume and continues the backup.

•

Pool and Volume library management providing Volume flexibility (e.g. monthly,
weekly, daily Volume sets, Volume sets segregated by Client, ...).

•

Machine independent Volume data format. Linux, Solaris, and Windows clients can all
be backed up to the same Volume if desired.

•

A flexible message handler including routing of messages from any daemon back to the
Director and automatic email reporting.

•

Multi−threaded implementation.•
Mechanisms to handle arbitrarily long filenames and messages.•
GZIP compression on a file by file basis done by the Client program if requested before
network transit.

•

Computation of MD5 or SHA1 signatures if requested.•
Autochanger support using a simple shell interface that can interface to virtually any
autoloader program. A script for mtx is provided.

•

Support for autochanger barcodes −− automatic tape labeling from barcodes.•
Raw device backup.•

The Current State of Bacula 13

Advantages of Bacula Over Other Backup Programs

Since there is a client for each machine, you can backup and restore clients of any type
ensuring that all attributes of files are properly saved and restored.

•

It is also possible to backup clients without any client software by using NFS or Samba.
However, if possible, we recommend running a Client File daemon on each machine to
be backed up.

•

Bacula handles multi−volume backups.•
A full comprehensive database of all files backed up. This permits online viewing of
files saved on any particular Volume.

•

Automatic pruning of the database (removal of old records) thus simplifying database
administration.

•

Any SQL database engine can be used making Bacula very flexible.•
The modular but integrated design makes Bacula very scalable.•
Since Bacula uses client file servers, any database or other application can be properly
shutdown by Bacula using the native tools of the system, backed up, then restarted (all
within a Bacula Job).

•

Bacula has a built−in Job scheduler.•
The Volume format is documented and there are simple C programs to read/write it.•
Bacula uses well defined (registered) TCP/IP ports −− no rpcs, no shared memory.•
Bacula installation and configuration is relatively simple compared to other comparable
products.

•

According to one user Bacula is as fast as the major commercial application.•
According to another user Bacula is four times as fast as a one particular commercial
application, probably because that application stores its catalog information in a large
number of individual files rather than an SQL database as Bacula does.

•

Current Implementation Weaknesses

The graphical user interface is currently in an infant stage.•
Typical of Microsoft, not all files can always be saved on WinNT and Win2000. Anyone
knowing the magic incantations please step forward. The files that are skipped seem to
be in exclusive use by some other process, and don't appear to be too important.

•

Windows Unicode filenames (e.g. Chinese) cannot be saved or restored.•

Other Items Not Implemented (but planned)

Complete error checking on configuration files.•
Event handlers are not yet implemented (e.g. when Job terminates do this, ...)•
File System Modules (configurable routines for saving/restoring special files).•
Data encryption between the daemons.•

Temporary Limitations or Restrictions

All three daemons (DIR, FD, SD) must be running for a Job to run. If you use MySQL as
the catalog, it must also be running. If you use SQLite as the catalog, it will be started
automatically. This isn't very significant as most other programs have the same
limitation.

•

Unicode is not yet supported.•

Bacula Storage Management System

Advantages of Bacula Over Other Backup Programs 14

128 bit integers are not yet implemented.•
Supports only IPv4.•

Design Limitations or Restrictions

Names (resource names, Volume names, and such) defined in Bacula configuration files
are limited to a fixed number of characters. Currently the limit is defined as 127
characters. Note, this does not apply to filenames, which may be arbitrarily long.

•

There is no concept of a Pool of backup devices (i.e. if device /dev/nst0 is busy, use
/dev/nst1, ...).

•

We recommend that if possible you avoid running multiple simultaneous backup Jobs.
This is because the jobs write to the archive device at the same time and thus their blocks
will be interleaved, and as a consequence restores will be slower since it will have to
read additional data to get to all the desired blocks. In addition, the bscan program used
to re−create a database from an old Volume will not restore multiple simultaneous jobs
correctly (this will be implemented in a later version).

•

Introduction Index Getting Started

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 3

The Current State of Bacula Index Installing Bacula

Bacula Storage Management System

Design Limitations or Restrictions 15

http://www.bacula.org/

Getting Started with Bacula
If you are like me, you want to get Bacula running immediately to get a feel for it, then later you
want to go back and read about all the details. This chapter attempts to accomplish just that: get
you going quickly without all the details. If you want to skip the section on Pools, Volumes and
Labels, you can always come back to it, but please read to the end of this chapter, and in
particular follow the instructions for testing your tape drive.

Supported Operating Systems

Linux systems (built and tested on RedHat 7.3).•
Most flavors of Linux (Gentoo, SuSE, Mandrake, Debian, ...).•
Solaris various versions.•
FreeBSD (tape driver supported in 1.30 −− please see some important considerations in
the Tape Modes on FreeBSD section of the Tape Testing chapter of this manual.) Note,
the FreeBSD SCSI tape driver does not support multiple volume backups in that on some
drives, significant amounts of data are lost at an end of tape condition. This is fixed with
FreeBSD problem report number 56274.

•

Windows (Win95/98/Me, WinNT/2K/XP) Client (File daemon) binaries.•
OpenBSD Client (File daemon).•
Irix Client (File daemon) (implemented but production testing not confirmed).•
Bacula is said to work on other systems (AIX, BSDI, Mac−Darwin, ...) but we do not
have first hand knowledge of these systems.

•

One user has successfully built and run the Client (File daemon) on MacOS X 10.3.
Readline support must be turned off.

•

See the Porting Chapter of this manual for information on porting to other systems.•

System Requirements

Bacula has been compiled and run on Linux RedHat, FreeBSD, and Solaris systems.•
It requires GNU C++ version 2.96 to compile. You can try with other compilers and
other version, but you are on your own. (We have successfully compiled and briefly
tested Bacula on RH8.0 with GCC 3.2, and several users report that it works fine. Note,
in general GNU C++ is a separate package (e.g. RPM) from GNU C, so you need them
both loaded. On RedHat systems, the C++ compiler is part of the gcc−c++ rpm package.

•

There are certain third party packages that Bacula needs. Except for MySQL, they can
all be found in the depkgs and depkgs1 releases.

•

If you want to build the Win32 binaries, you will need the full Cygwin 1.3.20 release.
Although all components build (console has some warnings), only the File daemon has
been tested. Please note that if you attempt to build Bacula on any other version of
Cygwin, particularly older versions or with GCC 3.2, you will be on your own.

•

Bacula requires a good implementation of pthreads to work.•
The source code has been written with portability in mind and is mostly POSIX
compatible. Thus porting to any POSIX compatible operating system should be
relatively easy.

•

The GNOME Console program is developed and tested under GNOME 1.4. It also
compiles under GNOME 2.0 (Bacula version 1.30 on a RH 8.0 system), and appears to
work fine, but more production testing is needed.

•

Getting Started with Bacula 16

Supported Tape Drives

It is very difficult to supply a list of supported tape drives, or drives that are known to work with
Bacula because of limited feedback (so if you use Bacula on a different drive, please let us
know). The following drives are known to work with Bacula:

Sony DDS 2,3,4 drives•
HP DLT drives•
Compaq DDS 2,3,4 drives (probably OEMed)•
Exabyte drives (except for those 10 years old or older)•
Exabyte VXA drives (formerly Ecrix).•
HP Colorado T4000S (Travan−4) drives with Backward Space Record = No•
Tandberg MLR3 on Linux•
Tandbert SLR6 on FreeBSD•
HP LTO Ultrium drive•
HP SureStore 6000 DDS (DAT2)•

Please check the btape section of this manual for procedures that you can use to verify if your
tape drive will work with Bacula. Also there is a list of supported autochangers models in the
autochangers chapter of this document, where you will find other tape drives that work with
Bacula.

Unsupported Tape Drives

The following drives are known either to not work or to have serious problems (the OnStream
IDE−SCSI maintainer has provided an updated driver for testing that should correct all
compatibility problems with Bacula, but no user has reported back on this yet).

All OnStream IDE−SCSI drives do not work•
OnStream SCSI drives are unlikely to work•

QIC tapes are known to have a number of particularities (fixed block size, and one EOF rather
than two to terminate the tape). As a consequence, you will need to take a lot of care in
configuring them to make them work correctly with Bacula.

Up Front Decisions

Before building Bacula you need to decide if you want to use SQLite or MySQL. Unless
you are already familiar with MySQL, we suggest that you use the SQLite database as it
is the simplest. If you need security or have a large operation, you should consider the
MySQL database because it provides all the Bacula features and is the best tested.
MySQL is also much easier to upgrade than SQLite when new versions of Bacula
require a database update.

•

If you wish to use SQLite as the Bacula catalog, please see Installing and Configuring
SQLite chapter of this manual.

•

If you wish to use MySQL as the Bacula catalog, please see the Installing and
Configuring MySQL chapter of this manual.

•

At this point, you should have Bacula built and installed. If not, please follow the
instructions in the Bacula Installation Chapter of this manual.

•

Bacula Storage Management System

Supported Tape Drives 17

Installing Bacula

Before setting up your configuration files, you will want to install Bacula in its final location.
Simply enter:

make install

If you have previously installed Bacula, the old binaries will be overwritten, but the old
configuration files will remain unchanged, and the "new" configuration files will be appended
with a .new. Generally if you have previously installed and run Bacula you will want to discard
or ignore the configuration files with the appended .new. For the details of doing the install,
please see the Installing Bacula chapter of this manual.

Understanding Pools, Volumes and Labels

If you have been using a program such as tar to backup your system, Pools, Volumes, and
labeling may be a bit confusing at first. A Volume is a single physical tape (or possibly a single
file) on which Bacula will write your backup data. Pools group together Volumes so that a
backup is not restricted to the length of a single Volume (tape). Consequently, rather than
explicitly naming Volumes in your Job, you specify a Pool, and Bacula will select the next
appendable Volume from the Pool and request you to mount it.

Although the basic Pool options are specified in the Director's Pool resource, the real Pool is
maintained in the Bacula Catalog. It contains information taken from the Pool resource
(bacula−dir.conf) as well as information on all the Volumes that have been added to the Pool.
Adding Volumes to a Pool is usually done manually with the Console program using the label
command.

For each Volume, Bacula maintains a fair amount of catalog information such as the first write
date/time, the last write date/time, the number of files on the Volume, the number of bytes on the
Volume, the number of Mounts, etc.

Before Bacula will read or write a Volume, the physical Volume must have a Bacula software
label so that Bacula can be sure the correct Volume is mounted. This is usually done using the
label command in the Console program.

The steps for creating a Pool, adding Volumes to it, and writing software labels to the Volumes,
may seem tedious at first, but in fact, they are quite simple to do, and they allow you to use
multiple Volumes (rather than being limited to the size of a single tape). Pools also give you
significant flexibility in your backup process. For example, you can have a "Daily" Pool of
Volumes for Incremental backups and a "Weekly" Pool of Volumes for Full backups. By
specifying the appropriate Pool in the daily and weekly backup Jobs, you thereby insure that no
daily Job ever writes to a Volume in the Weekly Pool and vise versa, and Bacula will tell you
what tape is needed and when.

For more on Pools, see the Pool Resource section of the Director Configuration chapter, or
simply read on, and we will come back to this subject later.

Bacula Storage Management System

Installing Bacula 18

Setting Up Bacula Configuration Files

After running the appropriate ./configure command and doing a make, and a make install, if
this is the first time you are running Bacula, you must create valid configuration files for the
Director, the File daemon, the Storage daemon, and the Console programs. If you have followed
our recommendations, default configuration files as well as the daemon binaries will be located
in your installation directory. In any case, the binaries are found in the directory you specified on
the −−sbindir option to the ./configure command, and the configuration files are found in the
directory you specified on the −−sysconfdir option.

When initially setting up Bacula you will need to invest a bit of time in modifying the default
configuration files to suit your environment. This may entail starting and stopping Bacula a
number of times until you get everything right. Please do not despair. Once you have created
your configuration files, you will rarely need to change them nor will you stop and start Bacula
very often. Most of the work will simply be in changing the tape when it is full.

Configuring the Console Program

The Console configuration file is found in the directory specified on the −−sysconfdir option
that you specified on the ./configure command and by default is named console.conf. Normally,
for first time users, no change is needed to this file. Reasonable defaults are set.

Configuring the File daemon

The File daemon configuration file is found in the directory specified on the −−sysconfdir option
that you specified on the ./configure command. By default, the File daemon's configuration file
is named bacula−fd.conf. Normally, for first time users, no change is needed to this file.
Reasonable defaults are set. However, if you are going to back up more than one machine, you
will need to install the File daemon with a unique configuration file on each machine to be
backed up. The information about each File daemon must appear in the Director's configuration
file.

Configuring the Director

The Director configuration file is found in the directory specified on the −−sysconfdir option
that you specified on the ./configure command. Normally the Director's configuration file is
named bacula−dir.conf.

In general, the only change you must make is modify the FileSet resource so that the Include
configuration directive contains at least one line with a valid name of a directory (or file) to be
saved.

If you do not have a DLT tape drive, you will probably want to edit the Storage resource to
contain names that are more representative of your actual storage device. You can always use the
existing names as you are free to arbitrarily assign them, but they must agree with the
corresponding names in the Storage daemon's configuration file.

You may also want to change the email address for notification from the default root to your
email address.

Bacula Storage Management System

Setting Up Bacula Configuration Files 19

Finally, if you have multiple systems to be backed up, you will need a separate File daemon or
Client specification for each system, specifying its name, address, and password. We have found
that giving your daemons the same name as your system but post fixed with −fd helps a lot in
debugging. That is, if your system name is foobaz, you would give the File daemon the name
foobaz−fd. For the Director, you might use foobaz−dir, and for the storage daemon, you might
use foobaz−sd.

Configuring the Storage daemon

The Storage daemon's configuration file is found in the directory specified on the −−sysconfdir
option that you specified on the ./configure command. By default, the Storage daemon's file is
named bacula−sd.conf. Edit this file to contain the correct Archive device names for any tape
devices that you have. If the configuration process properly detected your system, they will
already be correctly set. These Storage resource name and Media Type must be the same as the
corresponding ones in the Director's configuration file bacula−dir.conf.

Testing your Configuration Files

You can test if your configuration file is syntactically correct by running the appropriate daemon
with the −t option. The daemon will process the configuration file and print any error messages
then terminate. For example, assuming you have installed your binaries and configuration files in
the same directory.

cd <installation−directory>
./bacula−dir −t −c bacula−dir.conf
./bacula−fd −t −c bacula−fd.conf
./bacula−sd −t −c bacula−sd.conf
./console −t −c console.conf

will test the configuration files of each of the main programs. If the configuration file is OK, the
program will terminate without printing anything.

Testing Bacula Compatibility with Your Tape Drive

Before spending a lot of time on Bacula only to find that it doesn't work with your tape drive,
please read the btape −− Testing Your Tape Drive chapter of this manual. If you have a modern
standard SCSI tape drive on a Linux or Solaris, most likely it will work, but better test than be
sorry. For FreeBSD (and probably other xBSD flavors), reading the above mentioned tape testing
chapter is a must.

Running Bacula

Probably the most important part of running Bacula is being able to retore files. If you haven't
tried recovering files at least once, when you actually have to do it, you will be under a lot more
pressure (and prone to make errors) than if you had already tried it once.

To get a good idea how to use Bacula in a short time, I strongly recommend that you follow the
example in Running Bacula Chapter of this manual where you will get detailed instructions on
how to run Bacula.

Bacula Storage Management System

Configuring the Storage daemon 20

Log Rotation

If you use the default bacula−dir.conf or some variation of it, you will note that it logs all the
Bacula output to a file. To avoid that this file grows without limit, we recommend that you copy
the file logrotate from the scripts/logrotate to /etc/logrotate.d/bacula. This will cause the log
file to be rotated once a month and kept for a maximum of 5 months. You may want to edit this
file to change the default log rotation preferences.

Disaster Recovery

If you intend to use Bacula as a disaster recovery tool rather than simply a program to restore
lost or damaged files, you will want to read the Disaster Recovery Using Bacula Chapter of this
manual.

In any case, you are strongly urged to carefully test restoring some files that you have saved
rather than wait until disaster strikes. This way, you will be prepared.

The Current State of Bacula Index Installing Bacula

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 4

Getting Started Index Bacula Configuration

Bacula Storage Management System

Log Rotation 21

http://www.bacula.org/

Installing Bacula

General

In general, you will need the Bacula source release, and if you want to run a Windows client,
you will need the Bacula Windows binary release. However, Bacula needs certain third party
packages (such as readline, SQLite, MySQL to build properly depending on the options you
specify. To simplify your task, we have combined a number of these packages into two depkgs
releases (Dependency Packages). This can vastly simplify your life by providing you with all the
necessary packages rather than requiring you to find them on the Web, load them, and install
them.

Dependency Packages

As discussed above, we have combined a number of third party packages that Bacula might need
into the depkgs and depkgs1 releases. Typically, they will be named
depkgs−ddMMMyy.tar.gz and depkgs1−ddMMyy.tar.gz where dd is the day we release it,
MMM is the abbreviated month (e.g. Jan), and yy is the year. An actual example is:
depkgs−07Apr02.tar.gz. To install and build this package (if needed), you do the following:

Create a bacula directory, into which you will place both the Bacula source as well as
the dependency package.

1.

Detar the depkg into the bacula directory.2.
cd bacula/depkgs3.
make4.

Although the exact composition of the dependency packages may change from time to time, the
current makeup is the following:

3rd Party Package depkgs depkgs1

SQLite X −

mtx X −

readline X −

Note, some of these packages are quite large, so that this part can be a bit time consuming. The
above instructions will build all the packages contained in the directory. However, when building
Bacula, it will take only those pieces that it actually needs.

Alternatively, you can make just the packages that are needed. For example,

cd bacula/depkgs
make sqlite

will configure and build only the SQLite package.

Installing Bacula 22

You should build the packages that you will require in depkgs and/or depkgs1 prior to
configuring and building Bacula, since Bacula will need them during the build process.

Even if you do not use SQLite, you might find it worth while to build mtx because the tapeinfo
program that comes with it can often provide you with valuable information about your SCSI
tape drive (e.g. compression, min/max block sizes, ...).

Supported Operating Systems

Please see the Supported Operating Systems section of the QuickStart chapter of this manual.

Building Bacula from Source

The basic installation is rather simple.

Install and build any depkgs as noted above.1.
Configure and install MySQL (if desired). Installing and Configuring MySQL Phase I.
This is necessary so that the MySQL header files are available while compiling Bacula.
Note, if you already have a running MySQL on your system, you can skip this phase
provided that you have built the thread safe libraries. If not, or if you get an error linking
Bacula, follow the instructions cited above.

2.

As an alternative to MySQL, configure and install SQLite, which is part of the depkgs.
Installing and Configuring SQLite.

3.

Detar the Bacula source code preferably into the bacula directory discussed above.4.
cd to the directory containing the source code.5.
./configure (with appropriate options as described below)6.
Check the output of ./configure very carefully, especially the Install binaries and Install
config files directories. If they are not correct, please rerun ./configure until they are. The
output from ./configure is stored in config.out and can be re−displayed at any time
without rerunning the ./configure by doing cat config.out.

7.

If after running ./configure once, you decide to change options and re−run it, that is
perfectly fine, but before re−running it, you should run:

8.

 make distclean

so that you are sure to start from scratch and not have a mixture of the two options. This
is because ./configure caches much of the information. The make distclean is also
critical if you move the source file from one machine to another. If the make distclean
fails, just ignore it and continue on.
make9.

If you get errors while linking in the Storage daemon directory (src/stored), it is probably
because you have not loaded the static libraries on your system. I noticed this problem on
a Solaris system. To correct it, make sure that you have not added
−−enable−static−tools to the ./configure command.

make install10.
Create valid configuration files for each of the three daemons (Directory, File, Storage)
and for the Console program. For the details of how to do this, please see Setting Up

11.

Bacula Storage Management System

Supported Operating Systems 23

Bacula Configuration Files in the Configuration chapter of this manual. We recommend
that you start by modifying the default configuration files supplied, making the minimum
changes necessary. Complete customization can be done after you have Bacula up and
running. Please take care when modifying passwords, which were randomly generated,
and the daemon Names as the passwords and names must agree between the
configuration files for security reasons.
Create the Bacula MySQL databases and tables (if using MySQL) Installing and
Configuring MySQL Phase II or alternatively if you are using SQLite Installing and
Configuring SQLite Phase II.

12.

Start Bacula (./bacula start)13.
Interface with Bacula using the Console program14.
For the previous two items, please follow the instructions in the Running Bacula chapter
of this manual, where you will run a simple backup and do a restore. Do this before you
make heavy modifications to the configuration files so that you are sure that Bacula
works and are familiar with it. After that changing the conf files will be easier.

15.

If all goes well, the ./configure will correctly determine which operating system you are
running and configure the source code appropriately. Currently, FreeBSD, Linux
(RedHat), and Solaris are supported. MacOS X 10.3 is reported to work with the Client
only as long as readline support is disabled.

If you install Bacula on more than one system, and they are identical, you can simply
transfer the source tree to that other system and do a "make install". However, if there
are differences in the libraries or OS versions, or you wish to install on a different OS,
you should start from the original compress tar file. If you do transfer the source tree,
and you have previously done a ./configure command, you MUST do:

make distclean

prior to doing your new ./configure. This is because the GNU autoconf tools cache the
configuration, and if you re−use a configuration for a Linux machine on a Solaris, you
can be sure your build will fail. To avoid this, as mentioned above, either start from the
tar file, or do a "make distclean".

In general, you will probably want to supply a more complicated configure statement to
ensure that the modules you want are built and that everything is placed into the correct
directories.

For example, on RedHat, one could use the following:

CFLAGS="−g −Wall" \
 ./configure \
 −−sbindir=$HOME/bacula/bin \
 −−sysconfdir=$HOME/bacula/bin \
 −−with−pid−dir=$HOME/bacula/bin/working \
 −−with−subsys−dir=$HOME/bacula/bin/working \
 −−with−mysql=$HOME/mysql \
 −−with−working−dir=$HOME/bacula/bin/working \
 −−with−dump−email=$USER

For the developer's convenience, I have added a defaultconfig script to the examples
directory. This script script contains the statements that you would normally use, and

Bacula Storage Management System

Supported Operating Systems 24

each developer/user may modify them to suit his needs. You should find additional
useful examples in this directory as well.

If you have included the readline package in the build, the termcap package will be
needed to link. On some systems, such as SuSE, the termcap library is not in the standard
directory. As a consequence, you will need to set the LDFLAGS environment variable
prior to building.

LDFLAGS="−L/usr/lib/termcap"

Alternatively you may turn off the use of readline using the −−disable−readline option
to ./configure.

What Database to Use?

Before building Bacula you need to decide if you want to use SQLite or MySQL. If you
are not already running MySQL, we recommend that you start by using SQLite. This
will greatly simplify the setup for you.

If you wish to use MySQL as the Bacula catalog, please see the Installing and
Configuring MySQL chapter of this manual. You will need to install MySQL prior to
continuing with the configuration of Bacula.

If you wish to use SQLite as the Bacula catalog, please see Installing and Configuring
SQLite chapter of this manual.

Configure Options

The following command line options are available for configure to customize your
installation.

−−sysbindir=<binary−path>
Defines where the Bacula binary (executable) files will be placed during a make
install command.

−−sysconfdir=<config−path>
Defines where the Bacula configuration files should be placed during a make
install command.

−−enable−smartalloc
This enables the inclusion of the Smartalloc orphaned buffer detection code.
This option is highly recommended. Because we never build without this option,
you may experience problems if it is not enabled. This configuration parameter
is used while building Bacula

−−enable−gnome
If you have GNOME installed on your computer and you want to use the
GNOME GUI Console interface to Bacula, you must specify this option. Doing
so will build everything in the src/gnome−console directory.

−−enable−static−tools
This option causes the linker to link the Storage daemon utility tools (bls,
bextract, and bscan) statically. This permits using them without having the
shared libraries loaded. If you have problems linking in the src/stored directory,

Bacula Storage Management System

What Database to Use? 25

make sure you have not enabled this option, or explicitly disable static linking by
adding −−disable−static−tools.

−−enable−static−fd
This option causes the make process to build a static−bacula−fd in addition to
the standard File daemon. This static version will include statically linked
libraries and is required for the Bare Metal recovery. This option is largely
superseded by using make static−bacula−fd from with in the src/filed
directory. Also, the −−enable−client−only option described below is useful for
just building a client so that all the other parts of the program are not compiled.

−−enable−static−sd
This option causes the make process to build a static−bacula−sd in addition to
the standard Storage daemon. This static version will include statically linked
libraries and could be useful during a Bare Metal recovery.

−−enable−static−dir
This option causes the make process to build a static−bacula−dir in addition to
the standard Director. This static version will include statically linked libraries
and could be useful during a Bare Metal recovery.

−−enable−static−cons
This option causes the make process to build a static−console and a
static−gnome−console in addition to the standard console. This static version
will include statically linked libraries and could be useful during a Bare Metal
recovery.

−−enable−client−only
This option causes the make process to build only the File daemon and the
libraries that it needs. None of the other daemons, storage tools, nor the console
will be build. Likewise a make install will then only install the File daemon. To
cause all daemons to be built, you will need to do a configuration without this
option. This option greatly facilitates building a Client on a client only machine.

−−enable−largefile
This option (default) causes Bacula to be built with 64 bit file address support if
it is available on your system. This permits Bacula to read and write files greater
than 2 GBytes in size. You may disable this feature and revert to 32 bit file
addresses by using −−disable−largefile.

−−with−sqlite=<sqlite−path>
This enables use of the SQLite database. The sqlite−path is not normally
specified as Bacula looks for the necessary components in a standard location
(depkgs/sqlite). See Installing and Configuring MySQL chapter of this manual
for more details.

−−with−mysql=<mysql−path>
This enables building of the Catalog services for Bacula. It assumes that MySQL
is running on your system, and expects it to be installed in the mysql−path that
you specify. If this option is not present, the build will automatically include the
internal Bacula database code. We recommend that you use this option if
possible. If you do use this option, please proceed to installing MySQL in the
Installing and Configuring MySQL chapter before proceeding with the
configuration.

−−with−readline=<readline−path>
Tells Bacula where where readline is installed. Normally, Bacula will find
readline if it is in a standard library. If it is not found and no −−with−readline is
specified, readline will be disabled. This option affects the Bacula build.

−−with−tcp−wrappers=<path>

Bacula Storage Management System

What Database to Use? 26

This specifies that you want TCPWrappers compiled in (untested). The path is
optional since Bacula will normally find the libraries in the standard locations.
This option affects the Bacula build. Please note that this option has not been
fully tested.

−−with−working−dir=<working−directory−path>
This option is mandatory and specifies a directory into which Bacula may safely
place files that will remain between Bacula executions. For example, if the
internal database is used, Bacula will keep those files in this directory. This
option is only used to modify the daemon configuration files. You may also
accomplish the same thing by directly editing them later.

−−with−base−port=<port=number>
In order to run, Bacula needs three TCP/IP ports (one for the Bacula Console,
one for the Storage daemon, and one for the File daemon). The
−−with−baseport option will automatically assign three ports beginning at the
base port address specified. You may also change the port number in the
resulting configuration files. However, you need to take care that the numbers
correspond correctly in each of the three daemon configuration files. The default
base port is 9101, which assigns ports 9101 through 9103. These ports (9101,
9102, and 9103) have been officially assigned to Bacula by IANA. This option
is only used to modify the daemon configuration files. You may also accomplish
the same thing by directly editing them later.

−−with−dump−email=<email−address>
This option specifies the email address where any core dumps should be set.
This option is normally only used by developers.

−−with−pid−dir=<PATH>
This specifies where Bacula should place the process id file during execution.
The default is: /var/run.

−−with−subsys−dir=<PATH>
This specifies where Bacula should place the subsystem lock file during
execution. The default is /var/run/subsys. Please make sure that you do not
specify the same directory for this directory and for the sbindir directory.

−−with−dir−password=<Password>
This option allows you to specify the password used to access the Directory
(normally from the Console program). If it is not specified, configure will
automatically create a random password.

−−with−fd−password=<Password>
This option allows you to specify the password used to access the File daemon
(normally called from the Director). If it is not specified, configure will
automatically create a random password.

−−with−sd−password=<Password>
This option allows you to specify the password used to access the Directory
(normally called from the Director). If it is not specified, configure will
automatically create a random password.

Note, many other options are presented when you do a ./configure −−help, but they are
not implemented.

Recommended Options for most Systems

For most systems, we recommend starting with the following options:

Bacula Storage Management System

Recommended Options for most Systems 27

./configure \
 −−enable−smartalloc \
 −−sbindir=$HOME/bacula/bin \
 −−sysconfdir=$HOME/bacula/bin \
 −−with−pid−dir=$HOME/bacula/bin/working \
 −−with−subsys−dir=$HOME/bacula/bin/working \
 −−with−mysql=$HOME/mysql \
 −−with−working−dir=$HOME/bacula/working

If you want to install Bacula in an installation directory rather than run it out of the build
directory (as developers will do most of the time), you should also include the −−sbindir
and −−sysconfdir options with appropriate paths. Neither are necessary if you do not use
"make install" as is the case for most development work. See below for an example of
how Kern does it.

RedHat

Using SQLite:

CFLAGS="−g −Wall" ./configure \
 −−sbindir=$HOME/bacula/bin \
 −−sysconfdir=$HOME/bacula/bin \
 −−enable−smartalloc \
 −−with−sqlite=$HOME/bacula/depkgs/sqlite \
 −−with−working−dir=$HOME/bacula/working \
 −−with−pid−dir=$HOME/bacula/bin/working \
 −−with−subsys−dir=$HOME/bacula/bin/working

or

CFLAGS="−g −Wall" ./configure \
 −−sbindir=$HOME/bacula/bin \
 −−sysconfdir=$HOME/bacula/bin \
 −−enable−smartalloc \
 −−with−mysql=$HOME/mysql \
 −−with−working−dir=$HOME/bacula/working
 −−with−pid−dir=$HOME/bacula/bin/working \
 −−with−subsys−dir=$HOME/bacula/bin/working

Solaris

#!/bin/sh
CFLAGS="−g" ./configure \
 −−sbindir=$HOME/bacula/bin \
 −−sysconfdir=$HOME/bacula/bin \
 −−with−mysql=$HOME/mysql \
 −−enable−smartalloc \
 −−with−pid−dir=$HOME/bacula/bin/working \
 −−with−subsys−dir=$HOME/bacula/bin/working \
 −−with−working−dir=$HOME/bacula/working

Win32

Please note that as of this time (28 April 2003), on certain systems such as WinXP and
most likely Win2K, Bacula will restore files with the userid that Bacula is using namely

Bacula Storage Management System

RedHat 28

SYSTEM. This means that you may not be able to access those restored files until you
change the owner to be your userid.

To install the binary Win32 version of the File daemon please see the Win32 Installation
Chapter in this document.

Windows Systems with CYGWIN Installed

If you wish to build from the source, and if you have CYGWIN version 1.3.20 and GCC
2.95.3−5 installed, it is possible to build the Win32 version of Bacula on a Windows
machine. Please don't try any other versions of CYGWIN or GCC as there were known
problems. In addition, Bacula is designed to be installed on a non−CYGWIN system. If
you do install it on a system with CYGWIN installed, you must take special care to
install Bacula in the main CYGWIN directory (normally c:\cygwin) rather than in the
root (c:\), and you must use the CygwinInstall.bat and CygwinUnInstall.bat scripts
rather than the standard ones.

To date, the Win32 version has only been build on Win98 SR2, WinMe, and WinXP
Home systems with the above CYGWIN environment and all the available CYGWIN
tools loaded. In addition, the builds were done running under the bash shell. As time
permits, we will experiment with other environments, and if any of you do build it from
source, please let us know. The current CYGWIN environment was loaded using the
CYGWIN setup.exe program, downloading ALL the latest binaries and installing them.

Note, although most parts of Bacula build on Windows systems, the only part that we
have tested and used is the File daemon.

We recommend that you run the ./configure command with the following options:

./configure \
 −−sbindir=/bacula/bin \
 −−sysconfdir=/bacula/bin \
 −−with−working−dir=/bacula/working \
 −−with−pid−dir=/bacula/working \
 −−with−subsys−dir=/bacula/working \
 −−enable−smartalloc

Note, the automatic installation for Win32 is not yet written, so most of these
specifications are not really used.

After which, you can do a:

make

To create a binary tar release, do the following:

cd src/filed/win32
make binary−release

It will tell you where it has placed the binary release.

Bacula Storage Management System

Windows Systems with CYGWIN Installed 29

All the daemons will be built, but the only one tested to date is the Win32 File daemon.
For the other daemons, you are on your own. It is not very probable they will work.

Finally, you should follow the installation instructions in the Win32 Installation section
of this document, skipping the part that describes unZipping the binary release.

Kern's Configure Script

The script that I use for building on my "production" Linux machines is:

#!/bin/sh
This is Kern's configure script for Bacula
CFLAGS="−g −Wall" \
 ./configure \
 −−sbindir=$HOME/bacula/bin \
 −−sysconfdir=$HOME/bacula/bin \
 −−enable−gnome \
 −−with−pid−dir=$HOME/bacula/bin/working \
 −−with−subsys−dir=$HOME/bacula/bin/working \
 −−with−mysql=$HOME/mysql \
 −−with−working−dir=$HOME/bacula/bin/working \
 −−with−dump−email=$USER \
 −−with−baseport=9101
exit 0

Note that I define the base port as 9101, which means that Bacula will use port 9101 for
the Director console, port 9102 for the File daemons, and port 9103 for the Storage
daemons. These ports should be available on all systems because they have been
officially assigned to Bacula by IANA (Internet Assigned Numbers Authority). We
strongly recommend that you use only these ports to prevent any conflicts with other
programs. This is in fact the default if you do not specify a −−with−baseport option.

You may also want to put the following entries in your /etc/services file as it will make
viewing the connections made by Bacula easier to recognize (i.e. netstat −a):

bacula−dir 9101/tcp
bacula−fd 9102/tcp
bacula−sd 9103/tcp

Building a File Daemon or Client

If you run the Director and the Storage daemon on one machine and you wish to back up
another machine, you must have a copy of the File daemon for that machine. If the
machine and the Operating System are identical, you can simply copy the Bacula File
daemon binary file bacula−fd as well as its configuration file bacula−fd.conf then
modify the name and password in the conf file to be unique. Be sure to make
corresponding additions to the Director's configuration file (bacula−dir.conf).

If the architecture or the O/S level are different, you will need to build a File daemon on
the Client machine. To do so, you can use the same ./configure command as you did for
your main program, starting either from a fresh copy of the source tree, or using
make distclean before the ./configure.

Bacula Storage Management System

Kern's Configure Script 30

Since the File daemon does not access the Catalog database, you can remove the
−−with−mysql or −−with−sqlite options, then add −−enable−client−only. This will
compile only the necessary libraries and the client programs and thus avoids the
necessity of installing one or another of those database programs to build the File
daemon. With the above option, you simply enter make and just the client will be built.

Auto Starting the Daemons

If you wish the daemons to be automatically started and stopped when your system is
booted (a good idea), one more step is necessary. First, the ./configure process must
recognize your system −− that is it must be a supported platform and not unknown, then
you must install the platform dependent files by doing:

(become root)
make install−autostart

Please note, that the auto−start feature is implemented only on systems that we officially
support (currently, FreeBSD, RedHat Linux, and Solaris), and has only been fully tested
on RedHat Linux.

The make install−autostart will cause the appropriate startup scripts to be installed with
the necessary symbolic links. On RedHat Linux systems, these scripts reside in
/etc/rc.d/init.d/bacula−dir /etc/rc.d/init.d/bacula−fd, and /etc/rc.d/init.d/bacula−sd.
However the exact location depends on what operating system you are using.

If you only wish to install the File daemon, you may do so with:

make install−autostart−fd

Other Make Notes

To simply build a new executable in any directory, enter:

make

To clean out all the objects and binaries (including the files named 1, 2, or 3, which Kern
uses as temporary files), enter:

make clean

To really clean out everything for distribution, enter:

make distclean

note, this cleans out the Makefiles and is normally done from the top level directory to
prepare for distribution of the source. To recover from this state, you must redo the
./configure in the top level directory, since all the Makefiles will be deleted.

To add a new file in a subdirectory, edit the Makefile.in in that directory, then simply do
a make. In most cases, the make will rebuild the Makefile from the new Makefile.in. In
some case, you may need to issue the make a second time. In extreme cases, cd to the

Bacula Storage Management System

Auto Starting the Daemons 31

top level directory and enter: make Makefiles.

To add dependencies:

make depend

The make depend appends the header file dependencies for each of the object files to
Makefile and Makefile.in. This command should be done in each directory where you
change the dependencies. Normally, it only needs to be run when you add or delete
source or header files. make depend is normally automatically invoked during the
configuration process.

To install:

make install

This not normally done if you are developing Bacula, but is used if you are going to run
it to backup your system.

After doing a make install the following files will be installed on your system (more or
less). The exact files and location (directory) for each file depends on your ./configure
command (e.g. gnome−console and gnome−console.conf are not installed if you do not
configure GNOME. Also, if you are using SQLite instead of mysql, some of the files
will be different).

bacula
bacula−dir
bacula−dir.conf
bacula−fd
bacula−fd.conf
bacula−sd
bacula−sd.conf
bextract
bls
bscan
btape
btraceback
btraceback.gdb
console
console.conf
create_mysql_database
dbcheck
delete_catalog_backup
drop_bacula_tables
drop_mysql_tables
fd
gnome−console
gnome−console.conf
make_bacula_tables
make_catalog_backup
make_mysql_tables
mtx−changer
query.sql
smtp
startmysql
stopmysql

Bacula Storage Management System

Auto Starting the Daemons 32

Modifying the Bacula Configuration Files
See the chapter Configuring Bacula in this manual for instructions on how to set Bacula
configuration files.

Getting Started Index Bacula Configuration

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 5

Installing Bacula Index Director Configuration

Modifying the Bacula Configuration Files 33

http://www.bacula.org/

Customizing the Configuration Files
When each of the three Bacula daemons starts, it reads a configuration file specified on the
command line or the default bacula−dir.conf, bacula−fd.conf, bacula−sd.conf, or console.conf
for the Director daemon, the File daemon, the Storage daemon, and the Console program
respectively.

Each service (Director, Client, Storage, Console) has its own configuration file containing a set
of Resource Records. These resources are very similar from one service to another, but may
contain different records depending on the service. For example, in the Director's resource file,
the Director resource defines the name of the Director, a number of global Director parameters
and his password. In the File daemon configuration file, the Director resource specifies which
Directors are permitted to use the File daemon.

Before running Bacula for the first time, you must customize the configuration files for each
daemon. Default configuration files will have been created by the installation process, but you
will need to modify them to correspond to your system.

Resource Record Format

Although, you won't need to know the details of all the records, a basic knowledge of Bacula
resource records is essential. Each record contained within the resource (within the braces) is
composed of a keyword followed by an equal sign (=) followed by one or more values. The
keywords must be one of the known Bacula resource record keywords, and it may be composed
of upper or lower case characters and spaces.

Each resource definition MUST contain a Name record, and may optionally contain a
Description record. The Name record is used to uniquely identify the resource. The Description
record is (will be) used during display of the record to provide easier human recognition of the
record. For example:

Director {
 Name = "MyDir"
 Description = "Main Bacula Director"
 WorkingDirectory = "$HOME/bacula/bin/working"
}

Defines the Director resource with the name "MyDir" and a working directory
$HOME/bacula/bin/working. In general, if you want spaces in a name to the right of the first
equal sign (=), you must enclose that name within double quotes. Otherwise quotes are not
generally necessary because once defined, quoted strings and unquoted strings are all equal.

Comments

When reading the configuration file, blank lines are ignored and everything after a hash sign (#)
until the end of the line is taken to be a comment. A semicolon (;) is a logical end of line, and
anything after the semicolon is considered as the next statement. If a statement appears on a line
by itself, a semicolon is not necessary to terminate it, so generally in the examples in this manual,
you will not see many semicolons.

Customizing the Configuration Files 34

Upper and Lower Case and Spaces

Case (upper/lower) and spaces are totally ignored in the resource record keywords (the part
before the equal sign).

Within the keyword (i.e. before the equal sign), spaces are not significant. Thus the keywords:
name, Name, and N a m e are all identical.

Spaces after the equal sign and before the first character of the value are ignored.

In general, spaces within a value are significant (not ignored), and if the value is a name, you
must enclose the name in double quotes for the spaces to be accepted. Names may contain up to
127 characters. Currently, a name may contain any ASCII character. Within a quoted string, any
character following a backslash (\) is taken as itself (handy for inserting blackslashes and double
quotes ("). Please note, however, that Bacula resource names as well as certain other names (e.g.
Volume names) will in the future be severely limited to permit only letters (including ISO
accented letters), numbers, and a few special characters (space, underscore, ...). All other
characters and punctuation will be illegal.

Recognized Primitive Data Types

When parsing the resource records, Bacula classifies the data according to the types listed below.
The first time you read this, it may appear a bit overwhelming, but in reality, it is all pretty
logical and straight forward.

name
A keyword or name consisting of alpha numeric characters, including the hyphen,
underscore, and dollar characters. The first character of a name must be a letter. A name
has a maximum length currently set to 127 bytes. Typically keywords appear on the left
side of an equal (i.e. they are Bacula keywords). Keywords may not be quoted.

name−string
A name−string is similar to a name, except that the name may be quoted and can thus
contain additional characters including spaces. Name strings are limited to 127
characters in length. Name strings are typically used on the right side of an equal (i.e.
they are values to be associated with a keyword.

string
A quoted string containing virtually any character including spaces, or a non−quoted
string. A string may be of any length. Strings are typically values that correspond to
filenames, directories, or system command names. A forward slash (\) turns the next
character into itself, so to include a double quote in a string, you precede the double
quote with a forward slash. Likewise to include a forward slash.

directory
A directory is either a quoted or non−quoted string. A directory will be passed to your
standard shell for expansion when it is scanned. Thus constructs such as $HOME are
interpreted to be their correct values.

password
This is a Bacula password and it is stored internally in MD5 hashed format.

integer
A 32 bit integer value. It may be positive or negative.

positive integer

Bacula Storage Management System

Upper and Lower Case and Spaces 35

A 32 bit positive integer value.
long integer

A 64 bit integer value. Typically these are values such as bytes that can exceed 4 billion
and thus require a 64 bit value.

yes/no
Either a yes or a no.

size
A size specified as bytes. Typically, this is a floating point scientific input format
followed by an optional modifier. The floating point input is stored as a 64 bit integer
value. If a modifier is present, it must immediately follow the value with no intervening
spaces. The following modifiers are permitted:

k
1,024 (kilobytes)

m
1,048,576 (megabytes)

g
1,073,741,824 (gigabytes)

If you want to input one million rather than the megabyte size (1,048,576), you can
simply enter 1.0e6 or 100000.

time
A time or duration specified in seconds. It is specified in two parts: a number part and a
modifier part. The number can be an integer or a floating point number. The time is
stored internally as a 64 bit integer value. The modifer is mandatory and follows the
number part, either with or without intervening spaces. The following modifiers are
permitted:

seconds
seconds

minutes
minutes (60 seconds)

hours
hours (3600 seconds)

days
days (3600*24 seconds)

weeks
weeks (3600*24*7 seconds)

months
months (3600*24*30 seconds)

quarters
quarters (3600*24*91 seconds)

years
years (3600*24*365 seconds)

Any abbreviation of these modifiers is also permitted (i.e. seconds may be specified as
sec or s. A specification of m will be taken as months.

Note! in Bacula version 1.31 and below, the modifier was optional. It is now manditory.

Bacula Storage Management System

Upper and Lower Case and Spaces 36

Resource Types

The following table lists all current Bacula resource types. It shows what resources must be
defined for each service (daemon). The default configuration files will already contain at least
one example of each permitted resource, so you need not worry about creating all these kinds of
records from scratch.

Resource Director Client Storage Console

Catalog Yes No No No

Client Yes Yes No No

Device No No Yes No

Director Yes Yes Yes Yes

FileSet Yes No No No

Job Yes No No No

Message Yes Yes Yes No

Pool Yes No No No

Schedule Yes No No No

Storage Yes No Yes No

The details of each Resource and the records permitted therein are described in the following
chapters.

The following configuration files must be defined:

Console −− to define the resources for the Console program (user interface to the
Director). It defines which Directors are available so that you may interact with them.

•

Director −− to define the resources necessary for the Director. You define all the Clients
and Storage daemons that you use in this configuration file.

•

Client −− to define the resources for each client to be backed up. That is, you will have a
separate Client resource file on each machine that runs a File daemon.

•

Storage −− to define the resources to be used by each Storage daemon. Normally, you
will have a single Storage daemon that controls your tape drive or tape drives. However,
if you have tape drives on several machines, you will have at least one Storage daemon

•

Bacula Storage Management System

Resource Types 37

per machine.

Installing Bacula Index Director Configuration

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 5.1

Bacula Configuration Index Client/File daemon Configuration

Bacula Storage Management System

Resource Types 38

http://www.bacula.org/

Configuring the Director
Of all the configuration files needed to run Bacula, the Director's is the most complicated, and
the one that you will need to modify the most often as you add clients or modify the FileSets.

For a general discussion of configuration file and resources including the data types recognized
by Bacula. Please see the Configuration chapter of this manual.

Director Resource Types

Director resource type may be one of the following:

Job, Client, Storage, Catalog, Schedule, FileSet, Pool, Director, or Messages.

We present them here in the most logical order for defining them:

Director −− to define the Director's name and its access password used for authenticating
the Console program. Only a single Director resource definition may appear in the
Director's configuration file.

•

Job −− to define the backup/restore Jobs and to tie together the Client, FileSet and
Schedule resources to be used for each Job.

•

Schedule −− to define when a Job is to be automatically run by Bacula's internal
scheduler.

•

FileSet −− to define the set of files to be backed up for each Client.•
Client −− to define what Client is to be backed up.•
Storage −− to define on what physical device the Volumes should be mounted.•
Pool −− to define what the pool of Volumes that can be used for a particular Job.•
Catalog −− to define in what database to keep the list of files and the Volume names
where they are backed up.

•

Messages −− to define where error and information messages are to be sent or logged.•

Configuring the Director 39

The Director Resource
The Director resource defines the attributes of the Directors running on the network. In the
current implementation, there is only a single Director resource, but the final design will contain
multiple Directors to maintain index and media database redundancy.

Director
Start of the Director records. One and only one director resource must be supplied.

Name = <name>
The director name used by the system administrator. This record is required.

Description = <text>
The text field contains a description of the Director that will be displayed in the
graphical user interface. This record is optional.

Password = <UA−password>
Specifies the password that must be supplied for a Bacula Console to be authorized. The
same password must appear in the Director resource of the Console configuration file.
For added security, the password is never actually passed across the network but rather a
challenge response hash code created with the password. This record is required.

Messages = <Messages−resource−name>
The messages resource specifies where to deliver Director messages that are not
associated with a specific Job. Most messages are specific to a job and will be directed to
the Messages resource specified by the job. However, there are a few messages that can
occur when no job is running. This record is required.

Working Directory = <Directory>
This directive is mandatory and specifies a directory in which the Director may put its
status files. This directory should be used only by Bacula but may be shared by other
Bacula daemons. Standard shell expansion of the Directory is done when the
configuration file is read so that values such as $HOME will be properly expanded. This
record is required.

Pid Directory = <Directory>
This directive is mandatory and specifies a directory in which the Director may put its
process Id file files. The process Id file is used to shutdown Bacula and to prevent
multiple copies of Bacula from running simultaneously. Standard shell expansion of the
Directory is done when the configuration file is read so that values such as $HOME
will be properly expanded.
Typically on Linux systems, you will set this to: /var/run. If you are not installing
Bacula in the system directories, you can use the Working Directory as defined above.
This record is required.

QueryFile = <Path>
This directive is mandatory and specifies a directory and file in which the Director can
find the canned SQL statements for the Query command of the Console. Standard shell
expansion of the Path is done when the configuration file is read so that values such as
$HOME will be properly expanded. This record is required.

Maximum Concurrent Jobs = <number>
where <number> is the maximum number of total Director Jobs that should run
concurrently. The default is set to 1, but you may set it to a larger number. Note
however, at this time (Bacula version 1.30), multiple simultaneous jobs have not been
heavily tested.

The Director Resource 40

Because this feature is not yet well tested, we recommend that you either set it to 1 or
make careful tests to ensure that everything you want works, and at a minimum keep all
your Storage maximum simultaneous job limits to 1 (see discussed below). The Volume
format becomes much more complicated with multiple simultaneous jobs, and not all the
utility programs (e.g. bextract, ... have been properly updated to deal with more than one
Job at a time to the same Volume).BE WARNED!!!!

At the current time, there is no configuration parameter set or limit the number console
connections. A maximum of five simultaneous console connections are permitted.

Note that Maximum Concurrent Jobs is implemented in the Director, Job, Client, and
Storage resources. Each one is independent of the others, and all limits from each of
those resources must be met before a Job can run. There should be no problems
increasing the Maximum Concurrent Jobs in the Director, Client, and Job resources.
However, we strongly recommend that you always set Maximum Concurrent Jobs = 1
in each Storage definition. This will ensure that only one job is writing to any single
Volume at one time. By setting the Storage Maximum Concurrent Jobs to one, and the
Director's limit greater than one, you can safely run multiple simultaneous jobs with each
writing to a different Volume providing you have multiple Storage definitions −− that is
either multiple tape drives, or you are writing to separate file Volumes.

FD Connect Timeout = <time>
where time is the time that the Director should continue attempting to contact the File
daemon to start a job, and after which the Director will cancel the job. The default is 30
minutes.

SD Connect Timeout = <time>
where time is the time that the Director should continue attempting to contact the
Storage daemon to start a job, and after which the Director will cancel the job. The
default is 30 minutes.

DIRport = <port−number>
Specify the port (a positive integer) on which the Director daemon will listen for Bacula
Console connections. This same port number must be specified in the Director resource
of the Console configuration file. The default is 9101, so normally this record need not
be specified.

DirAddress = <IP−Address>
This record is optional, and if it is specified, it will cause the Director server (for the
Console program) to bind to the specified IP−Address, which is either a domain name
or an IP address specified as a dotted quadruple in string or quoted string format. If this
record is not specified, the Director will bind to any available address (the default).

The following is an example of a valid Director resource definition:

Director {
 Name = HeadMan
 WorkingDirectory = "$HOME/bacula/bin/working"
 Password = UA_password
 PidDirectory = "$HOME/bacula/bin/working"
 QueryFile = "$HOME/bacula/bin/query.sql"
 Messages = Standard
}

Bacula Storage Management System

The Director Resource 41

The Job Resource
The Job resource defines a Job (Backup, Restore, ...) that Bacula must perform. Each Job
resource definition contains the names of the Clients and their FileSets to backup or restore, the
Schedule for the Job, where the data are to be stored, and what media Pool can be used. In effect,
each Job resource must specify What, Where, How, and When or FileSet, Storage,
Backup/Restore/Level, and Schedule respectively.

Only a single type (Backup, Restore, ...) can be specified for any job. If you want to backup
multiple FileSets on the same Client or multiple Clients, you must define a Job for each one.

Job
Start of the Job records. At least one Job resource is required.

Name = <name>
The Job name. This name can be specified on the Run command in the console program
to start a job. If the name contains spaces, it must be specified between quotes. It is
generally a good idea to give your job the same name as the Client that it will backup.
This permits easy identification of jobs.
When the job actually runs, the unique Job Name will consist of the name you specify
here followed by the date and time the job was scheduled for execution. This record is
required.

Type = <job−type>
The Type record specifies the Job type, which may be one of the following: Backup,
Restore, Verify, or Admin. This record is required.
Backup

Run a backup Job. Normally you will have at least one Backup job for each
client you want to save. Normally, unless you turn off cataloging, most all the
important statistics and data concerning files backed up will be placed in the
catalog.

Restore
Run a restore Job. Normally, you will specify only one Restore job which acts as
a sort of prototype that you will modify using the console program in order to
perform restores. Although certain basic information from a Restore job is saved
in the catalog, it is very minimal compared to the information stored for a
Backup job −− for example, no File records are generated since no Files are
saved.

Verify
Run a verify Job. In general, verify jobs permit you to compare the contents of
the catalog to the file system, or to what was backed up. In addition, to verifying
that a tape that was written can be read, you can also use verify as a sort of
tripwire intrusion detection.

Admin
Run a admin Job. An Admin job can be used to periodically run catalog pruning,
if you do not want to do it at the end of each Backup Job. Although an Admin
job is recorded in the catalog, very little data is saved.

Level = <job−level>
The Level record specifies the default Job level to be run. The Level is normally
overridden by a different value that is specified in the Schedule resource. This record is
not required, but must be specified either by a Level record or as a override specified in

The Job Resource 42

the Schedule resource.
For a Backup Job, the Level may be one of the following:

Full
is all files in the FileSet whether or not they have changed.

Incremental
is all files that have changed since the last successful backup of the specified
FileSet. If the Director cannot find a previous Full, Differential, or Differential
backup, then the job will be upgraded into a Full backup. When the Director
looks for a "suitable" backup record in the catalog database, it looks for a
previous Job with:

The same Job name.⋅
The same Client name.⋅
The same FileSet (any change to the definition of the FileSet such as
adding or deleting a file in the Include or Exclude sections constitutes a
different FileSet.

⋅

The Job was a Full, Differential, or Incremental backup.⋅
The Job terminated normally (i.e. did not fail or was not canceled).⋅

If all the above conditions do not hold, the Director will upgrade the Incremental
to a Full save. Otherwise, the Incremental backup will be performed as
requested.

The File daemon (Client) decides which files to backup for an Incremental
backup by comparing start time of the prior Job (Full, Differential, or
Incremental) against the time each file was last "modified" (st_mtime) and the
time it was last "changed"(st_ctime). If the file was modified or changed after
this start time, it will then be backed up. You must ensure that the clock on the
client is the same as the one on the Director's machine. If the times are not
synchronized (or close), some files that have been changed may not be backed
up.

Differential
is all files that have changed since the last successful Full backup of the
specified FileSet. If the Director cannot find a previous Full backup or a suitable
Full backup, then the Differential job will be upgraded into a Full backup. When
the Director looks for a "suitable" Full backup record in the catalog database, it
looks for a previous Job with:

The same Job name.⋅
The same Client name.⋅
The same FileSet (any change to the definition of the FileSet such as
adding or deleting a file in the Include or Exclude sections constitutes a
different FileSet.

⋅

The Job was a FULL backup.⋅
The Job terminated normally (i.e. did not fail or was not canceled).⋅

If all the above conditions do not hold, the Director will upgrade the Differential
to a Full save. Otherwise, the Differential backup will be performed as
requested.

The File daemon (Client) decides which files to backup for a Differential backup
by comparing the start time of the prior Full backup Job against the time each
file was last "modified" (st_mtime) and the time it was last "changed"(st_ctime).

Bacula Storage Management System

The Job Resource 43

If the file was modified or changed after this start time, it will then be backed up.
The start time used is displayed after the Since on the Job report. In rare cases,
using the start time of the prior backup may cause some files to be backed up
twice, but it ensures that no change is missed. As with the Incremental option,
you must ensure that the clocks on your server and client are synchronized or as
close as possible to avoid the possibility of a file being skipped. For more
details, please see the discussion under the Incremental option above.

For a Restore Job, no level need be specified.

For a Verify Job, the Level may be one of the following:

InitCatalog
does a scan of the specified FileSet and stores the file attributes in the Catalog
database. Since no file data is saved, you might ask why you would want to do
this. It turns out to be a very simple and easy way to have a Tripwire like
feature using Bacula. In other words, it allows you to save the state of a set of
files defined by the FileSet and later check to see if those files have been
modified or deleted and if any new files have been added. This can be used to
detect system intrusion. Typically you would specify a FileSet that contains the
set of system files that should not change (e.g. /sbin, /boot, /lib, /bin, ...).
Normally, you run the InitCatalog level verify one time when your system is
first setup, and then once again after each modification (upgrade) to your system.
Thereafter, when your want to check the state of your system files, you use a
Verify level = Catalog. This compares the results of your InitCatalog with the
current state of the files.

Catalog
Compares the current state of the files against the state previously saved during
an InitCatalog. Any discrepancies are reported. The items reported are
determined by the verify options specified on the Include directive in the
specified FileSet (see the FileSet resource below for more details). Typically
this command will be run once a day (or night) to check for any changes to your
system files.
Please note! If you run two Verify Catalog jobs on the same client at the same
time, the results will certainly be incorrect. This is because Verify Catalog
modifies the Catalog database while running in order to track new files.

VolumeToCatalog
This level causes Bacula to read the file attribute data written to the Volume
from the last Job. The file attribute data are compared to the values saved in the
Catalog database and any differences are reported. This is similar to the Catalog
level except that instead of comparing the disk file attributes to the catalog
database, the attribute data written to the Volume is read and compared to the
catalog database. Although the attribute data including the signatures (MD5 or
SHA1) are compared the actual file data is not compared (it is not in the
catalog).
Please note! If you run two Verify VolumeToCatalog jobs on the same client at
the same time, the results will certainly be incorrect. This is because the Verify
VolumeToCatalog modifies the Catalog database while running.

DiskToCatalog

Bacula Storage Management System

The Job Resource 44

This level causes Bacula to read the files as they currently are on disk, and to
compare the current file attributes with the attributes saved in the catalog from
the last backup for the job specified on the VerifyJob record. This level differs
from the Catalog level described above by the fact that it compare not against a
previous Verify job but against a previous backup. When you run this level, you
must supply the verify options on your Include statements. Those options
determine what attribute fields are compared.
This command can be very useful if you have disk problems because it will
compare the current state of your disk against the last successful backup, which
may be several jobs.

Note, the current implementation (1.32c) does not identify files that have been
deleted.

Verify Job = <Job−Resource−Name>
If you run a verify job without this record, the last job run will be compared with the
catalog, which means that you must immediately follow a backup by a verify command.
If you specify a Verify Job Bacula will find the last job with that name that ran. This
permits you to run all your backups, then run Verify jobs on those that you wish to be
verified (most often a VolumeToCatalog so that the tape just written is re−read.

Bootstrap = <bootstrap−file>
The Bootstrap record specifies a bootstrap file that, if provided, will be used during
Restore Jobs and is ignored in other Job types. The bootstrap file contains the list of
tapes to be used in a restore Job as well as which files are to be restored. Specification of
this record is optional, and if specified, it is used only for a restore job. In addition, when
running a Restore job from the console console, this value can be changed.
If you use the Restore command in the Console program, to start a restore job, the
bootstrap file will be created automatically from the files you select to be restored.

For additional details of the bootstrap file, please see Restoring Files with the Bootstrap
File chapter of this manual.

Write Bootstrap = <bootstrap−file−specification>
The writebootstrap record specifies a file name where Bacula will write a bootstrap
file for each Backup job run. Thus this record applies only to Backup Jobs. If the Backup
job is a Full save, Bacula will erase any current contents of the specified file before
writing the bootstrap records. If the Job is an Incremental save, Bacula will append the
current bootstrap record to the end of the file.
Using this feature, permits you to constantly have a bootstrap file that can recover the
current state of your system. Normally, the file specified should be a mounted drive on
another machine, so that if your hard disk is lost, you will immediately have a bootstrap
record available.

If the bootstrap−file−specification begins with a vertical bar (|), Bacula will use the
specification as the name of a program to which it will pipe the bootstrap record. It could
for example be a shell script that emails you the bootstrap record.

For more details on using this file, please see the chapter entitled The Bootstrap File of
this manual.

Client = <client−resource−name>

Bacula Storage Management System

The Job Resource 45

The Client record specifies the Client (File daemon) that will be used in the current Job.
Only a single Client may be specified in any one Job. The Client runs on the machine to
be backed up, and sends the requested files to the Storage daemon for backup, or
receives them when restoring. For additional details, see the Client Resource section of
this chapter. This record is required.

FileSet = <FileSet−resource−name>
The FileSet record specifies the FileSet that will be used in the current Job. The FileSet
specifies which directories (or files) are to be backed up, and what options to use (e.g.
compression, ...). Only a single FileSet resource may be specified in any one Job. For
additional details, see the FileSet Resource section of this chapter. This record is
required.

Messages = <messages−resource−name>
The Messages record defines what Messages resource should be used for this job, and
thus how and where the various messages are to be delivered. For example, you can
direct some messages to a log file, and others can be sent by email. For additional
details, see the Messages Resource Chapter of this manual. This record is required.

Pool = <pool−resource−name>
The Pool record defines the pool of Volumes where your data can be backed up. Many
Bacula installations will use only the Default pool. However, if you want to specify a
different set of Volumes for different Clients or different Jobs, you will probably want to
use Pools. For additional details, see the Pool Resource section of this chapter. This
resource is required.

Schedule = <schedule−name>
The Schedule record defines what schedule is to be used for the Job. The schedule
determines when the Job will be automatically started and what Job level (i.e. Full,
Incremental, ...) is to be run. For additional details, see the Schedule Resource Chapter of
this manual. If a Schedule resource is specified, the job will be run according to the
schedule specified. If no Schedule resource is specified for the Job, the job must be
manually started using the Console program. Although you may specify only a single
Schedule resource for any one job, the Schedule resource may contain multiple run
records, which allow you to run the Job at many different times, and each run record
permits overriding the default Job Level Pool, Storage, and Messages resources. This
gives considerable flexibility in what can be done with a single Job.

Storage = <storage−resource−name>
The Storage record defines the name of the storage services where you want to backup
the FileSet data. For additional details, see the Storage Resource Chapter of this manual.
This record is required.

Max Start Delay = <time>
The time specifies maximum delay between the scheduled time and the actual start time
for the Job. For example, a job can be scheduled to run at 1:00am, but because other jobs
are running, it may wait to run. If the delay is set to 3600 (one hour) and the job has not
begun to run by 2:00am, the job will be canceled. This can be useful, for example, to
prevent jobs from running during day time hours. The default is 0 which indicates no
limit.

Prune Jobs = <yes/no>
Normally, pruning of Jobs from the Catalog is specified on a Client by Client basis in the
Client resource with the AutoPrune record. If this record is specified (not normally) and
the value is yes, it will override the value specified in the Client resource. The default is
no.

Prune Files = <yes/no>

Bacula Storage Management System

The Job Resource 46

Normally, pruning of Files from the Catalog is specified on a Client by Client basis in
the Client resource with the AutoPrune record. If this record is specified (not normally)
and the value is yes, it will override the value specified in the Client resource. The
default is no.

Prune Volumes = <yes/no>
Normally, pruning of Volumes from the Catalog is specified on a Client by Client basis
in the Client resource with the AutoPrune record. If this record is specified (not
normally) and the value is yes, it will override the value specified in the Client resource.
The default is no.

Run Before Job = <command>
The specified command is run as an external program prior to running the current Job.
Any output sent by the job to standard output will be included in the Bacula job report.
The command string must be a valid program name or name of a shell script. This record
is not required, but if it is and if the exit code of the program run is non−zero, the current
Bacula job will be canceled.
Before submitting the specified command to the operating system, Bacula performs
character substitution of the following characters:

 %% = %
 %c = Client's name
 %d = Director's name
 %i = JobId
 %e = Job Exit Status
 %j = Unique Job name
 %l = Job Level
 %n = Job name
 %t = Job type

As of version 1.30, Bacula checks the exit status of the RunBeforeJob program. If it is
non−zero, the job will be error terminated. Lutz Kittler has pointed out that this can be a
simple way to modify your schedules during a holiday. For example, suppose that you
normally do Full backups on Fridays, but Thursday and Friday are holidays. To avoid
having to change tapes between Thursday and Friday when no one is in the office, you
can create a RunBeforeJob that returns a non−zero status on Thursday and zero on all
other days. That way, the Thursday job will not run, and on Friday the tape you insert on
Wednesday before leaving will be used.

Run After Job = <command>
The specified command is run as an external program after the current job terminates.
This record is not required. The command string must be a valid program name or name
of a shell script. If the exit code of the program run is non−zero, the current Bacula job
will terminate in error. Before submitting the specified command to the operating
system, Bacula performs character substitution as described above for the Run Before
Job record.
An example of the use of this command is given in the Tips Chapter of this manual. As
of version 1.30, Bacula checks the exit status of the RunAfter program. If it is non−zero,
the job will be terminated in error.

Client Run Before Job = <command>
This command is the same as Run Before Job except that it is run on the client machine.
Note, this probably will not word with Windows clients.

Client Run After Job = <command>

Bacula Storage Management System

The Job Resource 47

This command is the same as Run After Job except that it is run on the client machine.
Note, this probably will not word with Windows clients.

Spool Attributes = <yes/no>
The default is set to no, which means that the File attributes are sent by the Storage
daemon to the Director as they are stored on tape. However, if you want to avoid the
possibility that database updates will slow down writing to the tape, you may want to set
the value to yes, in which case the Storage daemon will buffer the File attributes and
Storage coordinates to a temporary file in the Working Directory, then when writing the
Job data to the tape is completed, the attributes and storage coordinates will be sent to
the Director. The default is no.

Where = <directory>
This record applies only to a Restore job and specifies a prefix to the directory name of
all files being restored. This permits files to be restored in a different location from
which they were saved. If Where is not specified or is set to backslash (/), the files will
be restored to their original location. By default, we have set Where in the example
configuration files to be /tmp/bacula−restores. This is to prevent accidental overwriting
of your files.

Replace = <replace−option>
This record applies only to a Restore job and specifies what happens when Bacula wants
to restore a file or directory that already exists. You have the following options for
replace−option:
always

when the file to be restored already exists, it is deleted then replaced by the copy
backed up.

ifnewer
if the backed up file (on tape) is newer than the existing file, the existing file is
deleted and replaced by the back up.

ifolder
if the backed up file (on tape) is older than the existing file, the existing file is deleted
and replaced by the back up.

never

if the backed up file already exists, Bacula skips restoration for this file.
Prefix Links=<yes/no>

If a Where path prefix is specified for a recovery job, apply it to absolute links as well. The
default is No. When set to Yes during restoration of files to an alternate directory, any absolute
soft links will also be modified to point to the new alternate directory. Normally this is what is
desired −− i.e. everything is self consistent. However, if you wish to later move the files to their
original locations, all files linked with absolute names will be broken.

Maximum Concurrent Jobs = <number>
where <number> is the maximum number of Jobs from the current Job resource that can run
concurrently. Note, this record limits only Jobs with the same name as the resource in which it
appears. Any other restrictions on the maximum concurrent jobs such as in the Director, Client,
or Storage resources will also apply in addition to the limit specified here. The default is set to 1,
but you may set it to a larger number. We strongly recommend that you read the WARNING
documented under Maximum Concurrent Jobs in the Director's resource.

Reschedule On Error = <yes/no>
If this record is enabled, and the job terminates in error, the job will be rescheduled as
determined by the Reschedule Interval and Reschedule Times records. If you cancel the job, it
will not be rescheduled. The default is no (i.e. the job will not be rescheduled).

Bacula Storage Management System

The Job Resource 48

This specification can be useful for portables, laptops, or other machines that are not always
connected to the network or switched on.

Reschedule Interval = <time−specification>
If you have specified Reschedule On Error = yes and the job terminates in error, it will be
rescheduled after the interval of time specified by time−specification. See the time specification
formats in the Configure chapter for details of time specifications. If no interval is specified, the
job will not be rescheduled on error.

Reschedule Times = <count>
This record specifies the maximum number of times to reschedule the job. If it is set to zero (the
default) the job will be rescheduled an indefinite number of times.

Priority = <number>
This record permits you to control the order in which your jobs run by specifying a positive
non−zero number. The higher the number, the lower the job priority. Assuming you are not
running concurrent jobs, all queued jobs of priority 1 will run before queued jobs of priority 2
and so on, regardless of the original scheduling order.
The priority only affects waiting jobs that are queued to run, not jobs that are already running. If
one or more jobs of priority 2 are already running, and a new job is scheduled with priority 1, the
currently running priority 2 jobs must complete before the priority 1 job is run.

The default priority is 10.

If you want to run concurrent jobs, which is not recommended, you should keep these points in
mind:

To run concurrent jobs, you must set Maximum Concurrent Jobs = 2 in 5 or 6 distinct
places: in bacula−dir.conf in the Director, the Job, the Client, the Storage resources; in
bacula−fd in the FileDaemon (or Client) resource, and in bacula−sd.conf in the Storage
resource. If any one is missing, it will throttle the jobs to one at a time.

•

Bacula concurrently runs jobs of only one priority at a time. It will not simultaneously
run a priority 1 and a priority 2 job.

•

If Bacula is running a priority 2 job and a new priority 1 job is scheduled, it will wait
until the running priority 2 job terminates even if the Maximum Concurrent Jobs settings
would otherwise allow two jobs to run simultaneously.

•

Suppose that bacula is running a priority 2 job and new priority 1 job is scheduled and
queued waiting for the running priority 2 job to terminate. If you then start a second
priority 2 job, the waiting priority 1 job will prevent the new priority 2 job from running
concurrently with the running priority 2 job. That is: as long as there is a higher priority
job waiting to run, no new lower priority jobs will start even if the Maximum Concurrent
Jobs settings would normally allow them to run. This ensures that higher priority jobs
will be run as soon as possible.

•

If you have several jobs of different priority, it is best not to start them at exactly the same time,
because Bacula must examine them one at a time. If by chance Bacula treats a lower priority
first, then it will run before your high priority jobs. To avoid this, start any higher priority a few
seconds before lower ones. This insures that Bacula will examine the jobs in the correct order,
and that your priority scheme will be respected.

The following is an example of a valid Job resource definition:

Job {

Bacula Storage Management System

The Job Resource 49

 Name = "Minou"
 Type = Backup
 Level = Incremental # default
 Client = Minou
 FileSet="Minou Full Set"
 Storage = DLTDrive
 Pool = Default
 Schedule = "MinouWeeklyCycle"
 Messages = Standard
}

Bacula Storage Management System

The Job Resource 50

The Schedule Resource
The Schedule resource provides a means of automatically scheduling a Job as well as the ability
to override the default Level, Pool, Storage and Messages resources. In general, you specify an
action to be taken and when.

Schedule
Start of the Schedule records. No Schedule resource is required, but you will need at
least one if you want Jobs to be automatically started.

Name = <name>
The name of the schedule being defined. The name record is required.

Run = <Job−overrides> <Date−time−specification>
The Run record defines when a Job is to be run, and what overrides if any to apply. You
may specify multiple run records within a Schedule resource. If you do, they will all be
applied (i.e. multiple schedules). If you have two run records that start at the same time,
two Jobs will start at the same time (well, within one second of time difference).
The Job−overrides permit overriding the Level, the Storage, the Messages, and the
Pool specifications provided in the Job resource. By the use of these overrides, you may
customize a particular Job. For example, you may specify a Messages override for your
Incremental backups that outputs messages to a log file, but for your weekly or monthly
Full backups, you may send the output by email by using a different Messages override.

The Job−overrides are specified as: keyword=value where the keyword is Level,
Storage, Messages, or Pool, and the value is as defined on the respective record formats
for the Job resource. You may specify multiple Job−overrides on one Run record by
separating them with one or more spaces or by separating them with a trailing comma.
For example:

Level=Full
is all files in the FileSet whether or not they have changed.

Level=Incremental
is all files that have changed since the last backup.

Pool=Weekly
specifies to use the Pool named Weekly.

Storage=DLT_Drive
specifies to use DLT_Drive for the storage device.

Messages=Verbose
specifies to use the Verbose message resource for the Job.

The Date−time−specification allows you to specify when the Job is to be run. Any
specification given is assumed to be repetitive in nature. For example, daily means every
day of every month in every year.

Basically, you must supply a month, day, hour, and minute the Job is to be run. Of
these four items to be specified, day is special in that you may either specify a day of the
month such as 1, 2, ... 31, or you may specify a day of the week such as Monday,
Tuesday, ... Sunday. Finally, you may also specify a week qualifier to restrict the
schedule to the first, second, third, fourth, or fifth week of the month.

The Job will be run on either day that matches the current day (day of the week, or day
of the month).

The Schedule Resource 51

The default is that every hour of every day of every week of every month is set. As you
specify the parts of the time, the default for that part of the time is cleared and the new
value set. However, the other defaults are set until their corresponding part is set. For
example, if you specify only a day of the week, such as Tuesday the Job will be run
every hour of every Tuesday of every Month. That is the month and hour remain set to
the defaults of every month and all hours.

The following special keywords specify multiple parts of the time (e.g. day and hour),
and in specifying them none of the other defaults are cleared:

 Keyword Meaning
 =========== ================
 Hourly Every hour of every day of every month
 Weekly Every Sunday of the week of every month
 Daily Every day of every month
 Monthly Every first day of every month

All the other keywords show below specify only a single part of the time, and specifying
them will clear all the defaults, which means that you must then specify all parts of the
time:

The date/time to run the Job can be specified in the following way in pseudo−BNF:
<void−keyword> = on
<at−keyword> = at
<week−keyword> = 1st | 2nd | 3rd | 4th | 5th | first |
 second | third | forth | fifth
<wday−keyword> = sun | mon | tue | wed | thu | fri | sat |
 sunday | monday | tuesday | wednesday |
 thursday | friday
<month−keyword> = jan | feb | mar | apr | may | jun | jul |
 aug | sep | oct | nov | dec | january |
 february | ... | december
<daily−keyword> = daily
<weekly−keyword> = weekly
<monthly−keyword> = monthly
<hourly−keyword> = hourly
<digit> = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0
<number> = <digit> | <digit><number>
<12hour> = 0 | 1 | 2 | ... 12
<hour> = 0 | 1 | 2 | ... 23
<minute> = 0 | 1 | 2 | ... 59
<day> = 1 | 2 | ... 31
<time> = <hour>:<minute> |
 <12hour>:<minute>am |
 <12hour>:<minute>pm
<time−spec> = <at−keyword> <time> |
 <hourly−keyword>
<date−keyword> = <void−keyword> <weekly−keyword>
<day−range> = <day>−<day>
<month−range> = <month−keyword>−<month−keyword>
<wday−range> = <wday−keyword>−<wday−keyword>
<range> = <day−range> | <month−range> |
 <wday−range>
<date> = <date−keyword> | <day> | <range>
<date−spec> = <date> | <date−spec>
<day−spec> = <day> | <wday−keyword> |
 <day−range> | <wday−range> |

Bacula Storage Management System

The Schedule Resource 52

 <daily−keyword>
<day−spec> = <day> | <wday−keyword> |
 <week−keyword> <wday−keyword>
<month−spec> = <month−keyword> | <month−range> |
 <monthly−keyword>
<date−time−spec> = <month−spec> <day−spec> <time−spec>

An example schedule resource that is named WeeklyCycle and runs a job with level full each
Sunday at 1:05am and an incremental job Monday through Saturday at 1:05am is:

Schedule {
 Name = "WeeklyCycle"
 Run = Level=Full sun at 1:05
 Run = Level=Incremental mon−sat at 1:05
}

An example of a possible monthly cycle is as follows:

Schedule {
 Name = "MonthlyCycle"
 Run = Level=Full Pool=Monthly 1st sun at 1:05
 Run = Level=Differential 2nd−5th sun at 1:05
 Run = Level=Incremental Pool=Daily mon−sat at 1:05
}

Bacula Storage Management System

The Schedule Resource 53

The FileSet Resource
The FileSet resource defines what files are to be included in a backup job. At least one FileSet
resource is required. It consists of a list of files or directories to be included, a list of files or
directories to be excluded and the various backup options such as compression, encryption, and
signatures that are to be applied to each file.

Any change to the list of the included files will cause Bacula to automatically create a new
FileSet (defined by the name and an MD5 checksum of the Include contents). Each time a new
FileSet is created, Bacula will ensure that the first backup is always a Full save.

FileSet
Start of the FileSet records. At least one FileSet resource must be defined.

Name = <name>
The name of the FileSet resource. This record is required.

Include = <processing−options>
 { <file−list> }

The Include resource specifies the list of files and/or directories to be included in the
backup job. There can be any number of Include file−list specifications within the
FileSet, each having its own set of processing−options. Normally, the file−list consists
of one file or directory name per line. Directory names should be specified without a
trailing slash. Wild−card (or glob matching) can be specified. As a consequence, any
asterisk (*), question mark (?), or left−bracket ([) must be preceded by a slash (\\) if you
want it to represent the literal character.

You should always specify a full path for every directory and file that you list in the
FileSet. In addition, on Windows machines, you should always prefix the directory or
filename with the drive specification (e.g. c:/xxx) except within an Exclude where for
some reason the exclude will not work with a prefixed drive letter.

Bacula's default for processing directories is to recursively descend in the directory
saving all files and subdirectories. Bacula will not by default cross file systems (or
mount points in Unix parlance). This means that if you specify the root partition (e.g. /),
Bacula will save only the root partition and not any of the other mounted file systems.
Similarly on Windows systems, you must explicitly specify each of the drives you want
saved (e.g. c:/ and d:/ ...). In addition, at least for Windows systems, you will most likely
want to enclose each specification within double quotes. The df command on Unix
systems will show you which mount points you must specify to save everything. See
below for an example.

The <processing−options> is optional. If specified, it is a list of keyword=value
options to be applied to the file−list. Multiple options may be specified by separating
them with spaces. These options are used to modify the default processing behavior of
the files included. Since there can be multiple Include sets, this permits effectively
specifying the desired options (compression, encryption, ...) on a file by file basis. The
options may be one of the following:

compression=GZIP
All files saved will be software compressed using the GNU ZIP compression
format. The compression is done on a file by file basis by the File daemon. If

The FileSet Resource 54

there is a problem reading the tape in a single record of a file, it will at most
affect that file and none of the other files on the tape. Normally this option is not
needed if you have a modern tape drive as the drive will do its own compression.
However, compression is very important if you are writing your Volumes to a
file, and it can also be helpful if you have a fast computer but a slow network.
Specifying GZIP uses the default compression level six (i.e. GZIP is identical
to GZIP6). If you want a different compression level (1 through 9), you can
specify it by appending the level number with no intervening spaces to GZIP.
Thus compression=GZIP1 would give minimum compression but the fastest
algorithm, and compression=GZIP9 would give the highest level of
compression, but requires more computation. According to the GZIP
documentation, compression levels greater than 6 generally give very little extra
compression but are rather CPU intensive.

signature=MD5
An MD5 signature will be computed for all files saved. Adding this option
generates about 5% extra overhead for each file saved. We strongly recommend
that this option be specified as a default for all files.

signature=SHA1
An SHA1 signature will be computed for all files saved. Adding this option
generates about extra overhead for each file saved. The SHA1 algorithm is
purported to be some what slower than the MD5 algorithm, but at the same time
is significantly better from a cryptographic point of view (i.e. much fewer
collisions, much lower probability of being hacked.) We strongly recommend
that either this option or MD5 be specified as a default for all files. Note, only
one of the two options MD5 or SHA1 can be computed for any file.

*encryption=<algorithm>
All files saved will be encrypted using one of the following algorithms (NOT
YET IMPLEMENTED):
*Blowfish
*3DES

verify=<options>
The options letters specified are used when running a Verify Level=Catalog
job, and may be any combination of the following:
i

compare the inodes
p

compare the permission bits
n

compare the number of links
u

compare the user id
g

compare the group id
s

compare the size
a

compare the access time
m

compare the modification time (st_mtime)
c

Bacula Storage Management System

The FileSet Resource 55

compare the change time (st_ctime)
s

report file size decreases
5

compare the MD5 signature
1

compare the SHA1 signature

A useful set of general options on the Level=Catalog verify is pins5 i.e.
compare permission bits, inodes, number of links, size, and MD5 changes.

onefs=yes/no
If set to yes (the default), Bacula will remain on a single file system. That is it
will not backup file systems that are mounted on a subdirectory. In this case, you
must explicitly list each file system you want saved. If you set this option to no,
Bacula will backup all mounted file systems (i.e. traverse mount points) that are
found within the FileSet. Thus if you have NFS or Samba file systems mounted
on a directory included in your FileSet, they will also be backed up. Normally, it
is preferable to set onefs=yes and to explicitly name each file system you want
backed up. See the example below for more details.

portable=yes/no
If set to yes (default is no), the Bacula File daemon will backup Win32 files in a
portable format. By default, this option is set to no, which means that on Win32
systems, the data will be backed up using Windows API calls and on
WinNT/2K/XP, the security and ownership data will be properly backed up (and
restored), but the data format is not portable to other systems −− e.g. Unix,
Win95/98/Me. On Unix systems, this option is ignored, and unless you have a
specific need to have portable backups, we recommend accept the default (no)
so that the maximum information concerning your files is backed up.

recurse=yes/no
If set to yes (the default), Bacula will recurse (or descend) into all subdirectories
found unless the directory is explicitly excluded using an exclude definition. If
you set recurse=no, Bacula will save the subdirectory entries, but not descend
into the subdirectories, and thus will not save the contents of the subdirectories.
Normally, you will want the default (yes).

sparse=yes/no
Enable special code that checks for sparse files such as created by ndbm. The
default is no, so no checks are made for sparse files. You may specify
sparse=yes even on files that are not sparse file. No harm will be done, but there
will be a small additional overhead to check for buffers of all zero, and a small
additional amount of space on the output archive will be used to save the seek
address of each non−zero record read.
Restrictions: Bacula reads files in 32K buffers. If the whole buffer is zero, it
will be treated as a sparse block and not written to tape. However, if any part of
the buffer is non−zero, the whole buffer will be written to tape, possibly
including some disk sectors (generally 4098 bytes) that are all zero. As a
consequence, Bacula's detection of sparse blocks is in 32K increments rather
than the system block size. If anyone considers this to be a real problem, please
send in a request for change with the reason. The sparse code was first
implemented in version 1.27.

Bacula Storage Management System

The FileSet Resource 56

If you are not familiar with sparse files, an example is say a file where you wrote
512 bytes at address zero, then 512 bytes at address 1 million. The operating
system will allocate only two blocks, and the empty space or hole will have
nothing allocated. However, when you read the sparse file and read the addresses
where nothing was written, the OS will return all zeros as if the space were
allocated, and if you backup such a file, a lot of space will be used to write zeros
to the volume. Worse yet, when you restore the file, all the previously empty
space will now be allocated using much more disk space. By turning on the
sparse option, Bacula will specifically look for empty space in the file, and any
empty space will not be written to the Volume, nor will it be restored. The price
to pay for this is that Bacula must search each block it reads before writing it. On
a slow system, this may be important. If you suspect you have sparse files, you
should benchmark the difference or set sparse for only those files that are really
sparse.

readfifo=yes/no
If enabled, tells the Client to read the data on a backup and write the data on a
restore to any FIFO (pipe) that is explicitly mentioned in the FileSet. In this case,
you must have a program already running that writes into the FIFO for a backup
or reads from the FIFO on a restore. This can be accomplished with the
RunBeforeJob record. If this is not the case, Bacula will hang indefinitely on
reading/writing the FIFO. When this is not enabled (default), the Client simply
saves the directory entry for the FIFO.

<file−list> is a space separated list of filenames and/or directory names. To include
names containing spaces, enclose the name between double−quotes. The list may span
multiple lines, in fact, normally it is good practice to specify each filename on a separate
line.

There are a number of special cases when specifying files or directories in a file−list.
They are:

Any file−list item preceded by an at−sign (@) is assumed to be a filename
containing a list of files, which is read when the configuration file is parsed
during Director startup. Note, that the file is read on the Director's machine and
not on the Client.

♦

Any file−list item beginning with a vertical bar (|) is assumed to be a program.
This program will be executed on the Director's machine at the time the Job
starts (not when the Director reads the configuration file), and any output from
that program will be assumed to be a list of files or directories, one per line, to
be included. This allows you to have a job that for example includes all the local
partitions even if you change the partitioning by adding a disk.

♦

As an example:

 Include = signature=SHA1 {
 "|sh −c 'df −l | grep \"^/dev/hd[ab]\" | grep −v \".*/tmp\"
 | awk \"{print \\$6}\"'"
 }

will produce a list of all the local partitions on a RedHat Linux system. Note, the
above line was split, but should normally be written on one line. Quoting is a

Bacula Storage Management System

The FileSet Resource 57

real problem because you must quote for Bacula which consists of preceding
every \ and every " with a \, and you must also quote for the shell command. In
the end, it is probably easier just to execute a small file with:

 Include = signature=MD5 {
 "|my_partitions"
 }

where my_partitions has:

 #!/bin/sh
 df −l | grep "^/dev/hd[ab]" | grep −v ".*/tmp" | awk "{print \$6}"

If the vertical bar (|) is preceded by a backslash as in \|, the program will be
executed on the Director's machine instead of on the Director's machine −− (this
is implemented but not tested, and very likely will not work on Windows).

Any file−list item preceded by a less−than sign (<) will be taken to be a file.
This file will be read on the Director's machine at the time the Job starts, and the
data will be assumed to be a list of directories or files, one per line, to be
included. This feature allows you to modify the external file and change what
will be saved without stopping and restarting Bacula as would be necessary if
using the @ modifier noted above.

♦

If you precede the less−than sign (<) with a backslash as in \<, the file−list will
be read on the Client machine instead of on the Director's machine (implemented
but not tested).

If you explicitly specify a block device such as /dev/hda1, then Bacula (starting
with version 1.28) will assume that this is a raw partition to be backed up. In this
case, you are strongly urged to specify a sparse=yes include option, otherwise,
you will save the whole partition rather than just the actual data that the partition
contains. For example:

♦

 Include = signature=MD5 sparse=yes {
 /dev/hd6
 }

will backup the data in device /dev/hd6.

Ludovic Strappazon has pointed out that this feature can be used to backup a full
Microsoft Windows disk. Simply boot into the system using a Linux Rescue
disk, then load a statically linked Bacula as described in the Disaster Recovery
Using Bacula chapter of this manual. Then simply save the whole disk partition.
In the case of a disaster, you can then restore the desired partition.

If you explicitly specify a FIFO device name (created with mkfifo), and you add
the option readfifo=yes as an option, Bacula will read the FIFO and back its
data up to the Volume. For example:

♦

Bacula Storage Management System

The FileSet Resource 58

 Include = signature=SHA1 readfifo=yes {
 /home/abc/fifo
 }

if /home/abc/fifo is a fifo device, Bacula will open the fifo, read it, and store all
data thus obtained on the Volume. Please note, you must have a process on the
system that is writing into the fifo, or Bacula will hang, and after one minute of
waiting, it will go on to the next file. The data read can be anything since Bacula
treats it as a stream.

This feature can be an excellent way to do a "hot" backup of a very large
database. You can use the RunBeforeJob to create the fifo and to start a
program that dynamically reads your database and writes it to the fifo. Bacula
will then write it to the Volume.

During the restore operation, the inverse is true, after Bacula creates the fifo if
there was any data stored with it (no need to explicitly list it or add any options),
that data will be written back to the fifo. As a consequence, if any such FIFOs
exist in the fileset to be restored, you must ensure that there is a reader program
or Bacula will block, and after one minute, Bacula will time out the write to the
fifo and move on to the next file.

The Exclude Files specifies the list of files and/or directories to be excluded from the
backup job. The <file−list> is a comma or space separated list of filenames and/or
directory names. To exclude names containing spaces, enclose the name between
double−quotes. Most often each filename is on a separate line.

For exclusions on Windows systems, do not include a leading drive letter such as c:.
This does not work. Any filename preceded by an at−sign (@) is assumed to be a
filename on the Director's machine containing a list of files.

The following is an example of a valid FileSet resource definition:

FileSet {
 Name = "Full Set"
 Include = compression=GZIP signature=MD5 sparse=yes {
 @/etc/backup.list
 }
 Include = {
 /root/myfile
 /usr/lib/another_file
 }
 Exclude = { *.o }
}

Note, in the above example, all the files contained in /etc/backup.list will be compressed with
GZIP compression, an MD5 signature will be computed on the file's contents (its data), and
sparse file handling will apply.

The two files /root/myfile and /usr/lib/another_file will also be saved but without any options. In
addition, all files with the extension .o will be excluded from the file set (i.e. from the backup).

Bacula Storage Management System

The FileSet Resource 59

Suppose you want to save everything except /tmp on your system. Doing a df command, you get
the following output:

[kern@rufus k]$ df
Filesystem 1k−blocks Used Available Use% Mounted on
/dev/hda5 5044156 439232 4348692 10% /
/dev/hda1 62193 4935 54047 9% /boot
/dev/hda9 20161172 5524660 13612372 29% /home
/dev/hda2 62217 6843 52161 12% /rescue
/dev/hda8 5044156 42548 4745376 1% /tmp
/dev/hda6 5044156 2613132 2174792 55% /usr
none 127708 0 127708 0% /dev/shm
//minimatou/c$ 14099200 9895424 4203776 71% /mnt/mmatou
lmatou:/ 1554264 215884 1258056 15% /mnt/matou
lmatou:/home 2478140 1589952 760072 68% /mnt/matou/home
lmatou:/usr 1981000 1199960 678628 64% /mnt/matou/usr
lpmatou:/ 995116 484112 459596 52% /mnt/pmatou
lpmatou:/home 19222656 2787880 15458228 16% /mnt/pmatou/home
lpmatou:/usr 2478140 2038764 311260 87% /mnt/pmatou/usr
deuter:/ 4806936 97684 4465064 3% /mnt/deuter
deuter:/home 4806904 280100 4282620 7% /mnt/deuter/home
deuter:/files 44133352 27652876 14238608 67% /mnt/deuter/files

Now, if you specify only / in your Include list, Bacula will only save the Filesystem /dev/hda5.
To save all file systems except /tmp with out including any of the Samba or NFS mounted
systems, and explicitly excluding a /tmp, /proc, .journal, and .autofsck, which you will not want
to be saved and restored, you can use the following:

FileSet {
 Name = Everything
 Include = {
 /
 /boot
 /home
 /rescue
 /usr
 }
 Exclude = {
 /proc
 /tmp
 .journal
 .autofsck
 }
}

Since /tmp is on its own filesystem and it was not explicitly named in the Include list, it is not
really needed in the exclude list. It is better to list it in the Exclude list for clarity, and in case the
disks are changed so that it is no longer in its own partition.

Please be aware that allowing Bacula to traverse or change file systems can be very dangerous.
For example, with the following:

FileSet {
 Name = "Bad example"
 Include = onefs=no {
 /mnt/matou
 }
}

Bacula Storage Management System

The FileSet Resource 60

you will be backing up an NFS mounted partition (/mnt/matou), and since onefs is set to no,
Bacula will traverse file systems. However, if /mnt/matou has the current machine's file systems
mounted, as is often the case, you will get yourself into a recursive loop and the backup will
never end.

The following FileSet definition will backup a raw partition:

FileSet {
 Name = "RawPartition"
 Include = sparse=yes {
 /dev/hda2
 }
}

Note, in backing up and restoring a raw partition, you should ensure that no other process
including the system is writing to that partition. As a precaution, you are strongly urged to ensure
that the raw partition is not mounted or is mounted read−only. If necessary, this can be done
using the RunBeforeJob record.

Windows Considerations for FileSets

If you are entering Windows file names, the directory path may be preceded by the drive and a
colon (as in c:). However, the path separators must be specified in Unix convention (i.e. forward
slash (/)). If you wish to include a quote in a file name, precede the quote with a backslash (\\).
For example you might use the following for a Windows machine to backup the "My
Documents" directory:

FileSet {
 Name = "Windows Set"
 Include = {
 "c:/My Documents"
 }
 Exclude = { *.obj *.exe }
}

When using exclusion on Windows, do not use a drive prefix (i.e. c:) as it will prevent the
exclusion from working (don't ask me why −− I haven't figured this one out yet).

Testing Your FileSet

If you wish to get an idea of what your FileSet will really backup or if your exclusion rules will
work correctly, you can test it by using the estimate command in the Console program. See the
estimate command in the Console chapter of this manual.

Windows NTFS Naming Considerations

NTFS filenames containing Unicode characters (i.e. > 0xFF) cannot be explicitly named at the
moment. You must include such names by naming a higher level directory or a drive letter that
does not contain Unicode characters.

Bacula Storage Management System

Windows Considerations for FileSets 61

The Client Resource
The Client resource defines the attributes of the Clients that are served by this Director; that is
the machines that are to be backed up. You will need one Client resource definition for each
machine to be backed up.

Client (or FileDaemon)
Start of the Client records.

Name = <name>
The client name which will be used in the Job resource record or in the console run
command. This record is required.

Address = <address>
Where the address is a host name, a fully qualified domain name, or a network address in
dotted quad notation for a Bacula File server daemon. This record is required.

FD Port = <port−number>
Where the port is a port number at which the Bacula File server daemon can be
contacted. The default is 9102.

Catalog = <Catalog−resource−name>
This specifies the name of the catalog resource to be used for this Client. This record is
required.

Password = <password>
This is the password to be used when establishing a connection with the File services, so
the Client configuration file on the machine to be backed up must have the same
password defined for this Director. This record is required.

File Retention = <time−period−specification>
The File Retention record defines the length of time that Bacula will keep File records in
the Catalog database. When this time period expires, and if AutoPrune is set to yes
Bacula will prune (remove) File records that are older than the specified File Retention
period. Note, this affects only records in the catalog database. It does not effect your
archive backups.
File records may actually be retained for a shorter period than you specify on this record
if you specify either a shorter Job Retention or shorter Volume Retention period. The
shortest retention period of the three takes precedence. The time may be expressed in
seconds, minutes, hours, days, weeks, months, quarters, or years. See the Configuration
chapter of this manual for additional details of time specification.

The default is 60 days.

Job Retention = <time−period−specification>
The Job Retention record defines the length of time that Bacula will keep Job records in
the Catalog database. When this time period expires, and if AutoPrune is set to yes
Bacula will prune (remove) Job records that are older than the specified File Retention
period. As with the other retention periods, this affects only records in the catalog and
not data in your archive backup.
If a Job record is selected for pruning, all associated File and JobMedia records will also
be pruned regardless of the File Retention period set. As a consequence, you normally
will set the File retention period to be less than the Job retention period. The Job
retention period can actually be less than the value you specify here if you set the
Volume Retention record in the Pool resource to a smaller duration. This is because the
Job retention period and the Volume retention period are independently applied, so the

The Client Resource 62

smaller of the two takes precedence.

The Job retention period is specified as seconds, minutes, hours, days, weeks, months,
quarters, or years. See the Configuration chapter of this manual for additional details of
time specification.

The default is 180 days.

AutoPrune = <yes/no>
If AutoPrune is set to yes (default), Bacula (version 1.20 or greater) will automatically
apply the File retention period and the Job retention period for the Client at the end of
the Job. If you set AutoPrune = no, pruning will not be done, and your Catalog will
grow in size each time you run a Job. Pruning affects only information in the catalog and
not data stored in the backup archives (on Volumes).

Maximum Concurrent Jobs = <number>
where <number> is the maximum number of Jobs with the current Client that can run
concurrently. Note, this record limits only Jobs for Clients with the same name as the
resource in which it appears. Any other restrictions on the maximum concurrent jobs
such as in the Director, Job, or Storage resources will also apply in addition to any limit
specified here. The default is set to 1, but you may set it to a larger number. We strongly
recommend that you read the WARNING documented under Maximum Concurrent Jobs
in the Director's resource.

*Priority = <number>
The number specifies the priority of this client relative to other clients that the Director is
processing simultaneously. The priority can range from 1 to 1000. The clients are
ordered such that the smaller number priorities are performed first (not currently
implemented).

The following is an example of a valid Client resource definition:

Client {
 Name = Minimatou
 Address = minimatou
 Catalog = MySQL
 Password = very_good
}

Bacula Storage Management System

The Client Resource 63

The Storage Resource
The Storage resource defines which Storage daemons are available for use by the Director.

Storage
Start of the Storage records. At least one storage resource must be specified.

Name = <name>
The name of the storage resource. This name appears on the Storage record specified in
the Job record and is required.

Address = <address>
Where the address is a host name, a fully qualified domain name, or a IP address.
Please note that the <address> as specified here will be transmitted to the File daemon
who will then use it to contact the Storage daemon. Hence, it is not, a good idea to use
localhost as the name but rather a fully qualified machine name or an IP address. This
record is required.

SD Port = <port>
Where port is the port to use to contact the storage daemon for information and to start
jobs. This same port number must appear in the Storage resource of the Storage
daemon's configuration file. The default is 9103.

Password = <password>
This is the password to be used when establishing a connection with the Storage
services. This same password also must appear in the Director resource of the Storage
daemon's configuration file. This record is required.

Device = <device−name>
This record specifies the name of the device to be used to for the storage. This name is
not the physical device name, but the logical device name as defined on the Name record
contained in the Device resource definition of the Storage daemon configuration file.
You can specify any name you would like (even the device name if you prefer) up to a
maximum of 127 characters in length. The physical device name associated with this
device is specified in the Storage daemon configuration file (as Archive Device).
Please take care not to define two different Storage resource records in the Director that
point to the same Device in the Storage daemon. Doing so may cause the Storage
daemon to block (or hang) attempting to open the same device that is already open. This
record is required.

Media Type = <MediaType>
This record specifies the Media Type to be used to store the data. This is an arbitrary
string of characters up to 127 maximum that you define. It can be anything you want.
However, it is best to make it descriptive of the storage media (e.g. File, DAT, "HP
DLT8000", 8mm, ...). The MediaType specified here, must correspond to the Media
Type specified in the Device resource of the Storage daemon configuration file. This
record is required, and it is used by the Director and the Storage daemon to ensure that a
Volume automatically selected from the Pool corresponds to the physical device. If a
Storage daemon handles multiple devices (e.g. will write to various file Volumes on
different partitions), this record allows you to specify exactly which device.
As mentioned above, the value specified in the Director's Storage resource must agree
with the value specified in the Device resource in the Storage daemon's configuration
file. It is also an additional check so that you don't try to write data for a DLT onto an
8mm device.

Autochanger = <yes/no>

The Storage Resource 64

If you specify yes for this command (the default is no), when you use the label
command or the add command to create a new Volume, Bacula will also request the
Autochanger Slot number. This simplifies creating database entries for Volumes in an
autochanger. If you forget to specify the Slot, the autochanger will not be used.
However, you may modify the Slot associated with a Volume at any time by using the
update volume command in the console program. You may include this record whether
the Storage device is really an autochanger or not. It will do no harm, but the Slot
information will simply be ignored by the Storage daemon if the device is not really an
autochanger. The default is no.
For the autochanger to be used, you must also specify Autochanger = yes in the Device
Resource in the Storage daemon's configuration file. See the Using Autochangers manual
of this chapter for the details of using autochangers.

Maximum Concurrent Jobs = <number>
where <number> is the maximum number of Jobs with the current Storage resource that
can run concurrently. Note, this record limits only Jobs for Jobs using this Storage
daemon. Any other restrictions on the maximum concurrent jobs such as in the Director,
Job, or Client resources will also apply in addition to any limit specified here. The
default is set to 1, but you may set it to a larger number. We strongly recommend that
you read the WARNING documented under Maximum Concurrent Jobs in the Director's
resource.
While it is possible to set the Director's, Job's, or Client's maximum concurrent jobs
greater than one, you should take great care in setting the Storage daemon's greater than
one. By keeping this record set to one, you will avoid having two jobs simultaneously
write to the same Volume. Although this is supported, it is not currently recommended.

The following is an example of a valid Storage resource definition:

Definition of tape storage device
Storage {
 Name = DLTDrive
 Address = lpmatou
 Password = local_storage_password # password for Storage daemon
 Device = "HP DLT 80" # same as Device in Storage daemon
 Media Type = DLT8000 # same as MediaType in Storage daemon
}

Bacula Storage Management System

The Storage Resource 65

The Pool Resource
The Pool resource defines the set of storage Volumes (tapes or files) to be used by Bacula to
write the data. By configuring different Pools, you can determine which set of Volumes (media)
receives the backup data. This permits, for example, to store all full backup data on one set of
Volumes and all incremental backups on another set of Volumes. Alternatively, you could assign
a different set of Volumes to each machine that you backup. This is most easily done by defining
multiple Pools.

Another important aspect of a Pool is that it contains the default attributes (Maximum Jobs,
Retention Period, Recycle flag, ...) that will be given to a Volume when it is created. This avoids
the need for you to answer a large number of questions when labeling a new Volume. Each of
these attributes can later be changed on a Volume by Volume basis using the update command
in the console program. Note that you must explicitly specify which Pool Bacula is to use with
each Job. Bacula will not automatically search for the correct Pool.

Most often in Bacula installations all backups for all machines (Clients) go to a single set of
Volumes. In this case, you will probably only use the Default Pool. If your backup strategy calls
for you to mount a different tape each day, you will probably want to define a separate Pool for
each day. For more information on this subject, please see the Backup Strategies chapter of this
manual.

To use a Pool, there are three distinct steps. First the Pool must be defined in the Director's
configuration file. Then the Pool must be written to the Catalog database. This is done
automatically by the Director each time that it starts, or alternatively can be done using the
create command in the console program. Finally, if you change the Pool definition in the
Director's configuration file and restart Bacula, the pool will be updated alternatively you can use
the update pool console command to refresh the database image. It is this database image rather
than the Director's resource image that is used for the default Volume attributes. Note, for the
pool to be automatically created or updated, it must be explicitly referenced by a Job resource.

Next the physical media must be labeled. The labeling can either be done with the label
command in the console program or using the btape program. The preferred method is to use the
label command in the console program.

Finally, you must add Volume names (and their attributes) to the Pool. For Volumes to be used
by Bacula they must be of the same Media Type as the archive device specified for the job (i.e.
if you are going to back up to a DLT device, the Pool must have DLT volumes defined since
8mm volumes cannot be mounted on a DLT drive). The Media Type has particular importance if
you are backing up to files. When running a Job, you must explicitly specify which Pool to use.
Bacula will then automatically select the next Volume to use from the Pool, but it will ensure that
the Media Type of any Volume selected from the Pool is identical to that required by the
Storage resource you have specified for the Job.

If you use the label command in the console program to label the Volumes, they will
automatically be added to the Pool, so this last step is not normally required.

It is also possible to add Volumes to the database without explicitly labeling the physical volume.
This is done with the add console command.

The Pool Resource 66

As previously mentioned, each time Bacula starts, it scans all the Pools associated with each
Catalog, and if the database record does not already exist, it will be created from the Pool
Resource definition. Bacula probably should do an update pool if you change the Pool
definition, but currently, you must do this manually using the update pool command in the
Console program.

The Pool Resource defined in the Director's configuration file (bacula−dir.conf) may contain the
following records:

Pool
Start of the Pool records. There must be at least one Pool resource defined.

Name = <name>
The name of the pool. For most applications, you will use the default pool name Default.
This record is required.

Number of Volumes = <number>
This record specifies the number of volumes (tapes or files) contained in the pool.
Normally, it is defined and updated automatically by the Bacula catalog handling
routines.

Maximum Volumes = <number>
This record specifies the maximum number of volumes (tapes or files) contained in the
pool. This record is optional, if omitted or set to zero, any number of volumes will be
permitted. In general, this record is useful for Autochangers where there is a fixed
number of Volumes, or for File storage where you wish to to ensure that the backups
made to disk files do not become too numerous or consume too much space.

Pool Type = <type>
This record defines the pool type, which corresponds to the type of Job being run. It is
required and may be one of the following:

Backup◊
*Archive◊
*Cloned◊
*Migration◊
*Copy◊
*Save◊

Use Volume Once = <yes/no>
This record if set to yes specifies that each volume is to be used only once. This is most
useful when the Media is a file and you want a new file for each backup that is done. The
default is no (i.e. use volume any number of times). This record will most likely be
phased out (deprecated), so you are recommended to use Maximum Volume Jobs = 1
instead.

Maximum Volume Jobs = <positive−integer>
This record specifies the maximum number of Jobs that can be written to the Volume. If
you specify zero (the default), there is no limit. Otherwise, when the number of Jobs
backed up to the Volume equals positive−integer the Volume will be marked Used.
When the Volume is marked Used it can no longer be used for appending Jobs, much
like the Full status but it can be recycled if recycling is enabled. By setting
MaximumVolumeJobs to one, you get the same effect as setting UseVolumeOnce =
yes.

Maximum Volume Files = <positive−integer>
This record specifies the maximum number of files that can be written to the Volume. If
you specify zero (the default), there is no limit. Otherwise, when the number of files
written to the Volume equals positive−integer the Volume will be marked Used. When

Bacula Storage Management System

The Pool Resource 67

the Volume is marked Used it can no longer be used for appending Jobs, much like the
Full status but it can be recycled if recycling is enabled. This value is checked and the
Used status is set only at the end of a job that writes to the particular volume.

Maximum Volume Bytes = <size>
This record specifies the maximum number of bytes that can be written to the Volume. If
you specify zero (the default), there is no limit except the physical size of the Volume.
Otherwise, when the number of bytes written to the Volume equals size the Volume will
be marked Used. When the Volume is marked Used it can no longer be used for
appending Jobs, much like the Full status but it can be recycled if recycling is enabled.
This value is checked and the Used status set while the job is writing to the particular
volume.

Volume Use Duration = <time−period−specification>
The Volume Use Duration record defines the time period that the Volume can be written
beginning from the time of first data write to the Volume. If the time−period specified is
zero (the default), the Volume can be written indefinitely. Otherwise, when the time
period from the first write to the volume (the first Job written) exceeds the
time−period−specification, the Volume will be marked Used, which means that no more
Jobs can be appended to the Volume, but it may be recycled if recycling is enabled.
You might use this record, for example, if you have a Volume used for Incremental
backups, and Volumes used for Weekly Full backups. Once the Full backup is done, you
will want to use a different Incremental Volume. This can be accomplished by setting the
Volume Use Duration for the Incremental Volume to six days. I.e. it will be used for the
6 days following a Full save, then a different Incremental volume will be used.

This value is checked and the Used status is set only at the end of a job that writes to the
particular volume, which means that even though the use duration may have expired, the
catalog entry will not be updated until the next job that uses this volume is run.

Catalog Files = <yes/no>
This record defines whether or not you want the names of the files that were saved to be
put into the catalog. The default is yes. The advantage of specifying Catalog Files = No
is that you will have a significantly smaller Catalog database. The disadvantage is that
you will not be able to produce a Catalog listing of the files backed up for each Job (this
is often called Browsing).

AutoPrune = <yes/no>
If AutoPrune is set to yes (default), Bacula (version 1.20 or greater) will automatically
apply the Volume Retention period when new Volume is needed and no appendable
Volumes exist in the Pool. Volume pruning causes expired Jobs (older than the Volume
Retention period) to be deleted from the Catalog and permits possible recycling of the
Volume.

Volume Retention = <time−period−specification>
The Volume Retention record defines the length of time that Bacula will keep Job
records associated with the Volume in the Catalog database. When this time period
expires, and if AutoPrune is set to yes Bacula will prune (remove) Job records that are
older than the specified Volume Retention period. All File records associated with
pruned Jobs are also pruned. The time may be specified as seconds, minutes, hours, days,
weeks, months, quarters, or years. The Volume Retention applied independently to the
Job Retention and the File Retention periods defined in the Client resource. This means
that the shorter period is the one that applies. Note, that when the Volume Retention
period has been reached, it will prune both the Job and the File records.

Bacula Storage Management System

The Pool Resource 68

The default is 365 days. Note, this record sets the default value for each Volume entry in
the Catalog when the Volume is created. The value in the catalog may be later
individually changed for each Volume using the Console program.

By defining multiple Pools with different Volume Retention periods, you may
effectively have a set of tapes that is recycled weekly, another Pool of tapes that is
recycled monthly and so on. However, one must keep in mind that if your Volume
Retention period is too short, it may prune the last valid Full backup, and hence until the
next Full backup is done, you will not have a complete backup of your system, and in
addition, the next Incremental or Differental backup will be promoted to a Full backup.
As a consquence, the minimum Volume Retention period should be at twice the interval
of your Full backups. This means that if you do a Full backup once a month, the
minimum Volume retention period should be two months.

Recycle = <yes/no>
This record specifies the default for recycling Purged Volumes. If it is set to yes and
Bacula needs a volume but finds none that are appendable, it will search for Purged
Volumes (i.e. volumes with all the Jobs and Files expired and thus deleted from the
Catalog). If the Volume is recycled, all previous data written to that Volume will be
overwritten.

Recycle Oldest Volume = <yes/no>
This record instructs the Director to search for the oldest used Volume in the Pool when
another Volume is requested by the Storage daemon and none are available. The catalog
is then pruned respecting the retention periods of all Files and Jobs written to this
Volume. If all Jobs are pruned (i.e. the volume is Purged), then the Volume is recycled
and will be used as the next Volume to be written. This record respects any Job, File, or
Volume retention periods that you may have specified, and as such it is much better to
use this record than the Purge Oldest Volume.
This record can be useful if you have a fixed number of Volumes in the Pool and you
want to cycle through them and you have specified the correct retention periods.

Recycle Current Volume = <yes/no>
If the Bacula needs a new Volume, this record instructs Bacula to do Prune the volume
respecting the Job and File retention periods. If all Jobs are pruned (i.e. the volume is
Purged), then the Volume is recycled and will be used as the next Volume to be written.
This record respects any Job, File, or Volume retention periods that you may have
specified, and as such it is much better to use this record than the Purge Oldest Volume.
This record can be useful if you have a fixed number of Volumes in the Pool and you
want to cycle through them and you have specified the correct retention periods.

Purge Oldest Volume = <yes/no>
This record instructs the Director to search for the oldest used Volume in the Pool when
another Volume is requested by the Storage daemon and none are available. The catalog
is then purged irrespective of retention periods of all Files and Jobs written to this
Volume. The Volume is then recycled and will be used as the next Volume to be written.
This record overrides any Job, File, or Volume retention periods that you may have
specified.
This record can be useful if you have a fixed number of Volumes in the Pool and you
want to cycle through them and when all Volumes are full, but you don't want to worry
about setting proper retention periods. However, by using this option you risk losing
valuable data.

Bacula Storage Management System

The Pool Resource 69

Please be aware that Purge Oldest Volume disregards all retention periods. If you
have only a single Volume defined and you turn this variable on, that Volume will
always be immediately overwritten when it fills! So at a minimum, ensure that you have
a decent number of Volumes in your Pool before running any jobs. If you want retention
periods to apply do not use this record. To specify a retention period, use the Volume
Retention record (see above).

I highly recommend against using this record, because it is sure that some day, Bacula
will recycle a Volume that contains current data.

Accept Any Volume = <yes/no>
This record specifies whether or not any volume from the Pool may be used for backup.
The default is yes as of version 1.27 and later. If it is no then only the first writable
volume in the Pool will be accepted for writing backup data, thus Bacula will fill each
Volume sequentially in turn before using any other appendable volume in the Pool. If
this is no and you mount a volume out of order, Bacula will not accept it. If this is yes
any appendable volume from the pool mounted will be accepted.
If your tape backup procedure dictates that you manually mount the next volume, you
will almost certainly want to be sure this record is turned on.

If you are going on vacation and you think the current volume may not have enough
room on it, you can simply label a new tape and leave it in the drive, and assuming that
Accept Any Volume is yes Bacula will begin writing on it. When you return from
vacation, simply remount the last tape, and Bacula will continue writing on it until it is
full. Then you can remount your vacation tape and Bacula will fill it in turn.

Cleaning Prefix = <string>
This record defines a prefix string, which if it matches the beginning of a Volume name
during labeling of a Volume, the Volume will be defined with the VolStatus set to
Cleaning and thus Bacula will never attempt to use this tape. This is primarily for use
with autochangers that accept barcodes where the convention is that barcodes beginning
with CLN are treated as cleaning tapes.

Label Format = <format>
This record specifies the format of the labels contained in this pool. The format record is
used as a sort of template to create new Volume names during automatic Volume
labeling.
The format consists of letters, numbers and the special characters hyphen (−),
underscore (_), colon (:), and period (.), which are the legal characters for a Volume
name. The format should be enclosed in double quotes (").

In addition, the format may contain a number of variable expansion characters which
will be expanded by a complex algorithm allowing you to create Volume names of many
different formats. In all cases, the expansion process must resolve to the set of characters
noted above that are legal Volume names. Generally, these variable expansion characters
begin with a dollar sign ($) or a left bracket ([). For more details on variable expansion,
please see the Variable Expansion Chapter of this manual.

If no variable expansion characters are found in the string, the Volume name will be
formed from the format string appended with the number of volumes in the pool plus
one, which will be edited as four digits with leading zeros. For example, with a Label
Format = File−, the first volumes will be named File−0001, File−0002, ...

Bacula Storage Management System

The Pool Resource 70

With the exception of Job specific variables, you can test your LabelFormat by using
the var command the Console Chapter of this manual.

In almost all cases, you should enclose the format specification (part after the equal sign)
in double quotes.

In order for a Pool to be used during a Backup Job, the Pool must have at least one Volume
associated with it. Volumes are created for a Pool using the label or the add commands in the
Bacula Console, program. In addition to adding Volumes to the Pool (i.e. putting the Volume
names in the Catalog database), the physical Volume must be labeled with valid Bacula software
volume label before Bacula will accept the Volume. This will be automatically done if you use
the label command. Bacula can automatically label Volumes if instructed to do so, but this
feature is not yet fully implemented.

The following is an example of a valid Pool resource definition:

Pool {
 Name = Default
 Pool Type = Backup
}

Bacula Storage Management System

The Pool Resource 71

The Catalog Resource
The Catalog Resource defines what catalog to use for the current job. Currently, Bacula can only
handle a single database server (SQLite, MySQL, built−in) that is defined when configuring
Bacula. However, there may be as many Catalogs (databases) defined as you wish. For example,
you may want each Client to have its own Catalog database, or you may want backup jobs to use
one database and verify or restore jobs to use another database.

Catalog
Start of the Catalog records. At least one Catalog resource must be defined.

Name = <name>
The name of the Catalog. No necessary relation to the database server name. This name
will be specified in the Client resource record indicating that all catalog data for that
Client is maintained in this Catalog. This record is required.

password = <password>
This specifies the password to use when logging into the database. This record is
required.

DB Name = <name>
This specifies the name of the database. If you use multiple catalogs (databases), you
specify which one here. If you are using an external database server rather than the
internal one, you must specify a name that is known to the server (i.e. you explicitly
created the Bacula tables using this name. This record is required.

user = <user>
This specifies what user name to use to log into the database. This record is required.

DB Socket = <socket−name>
This is the name of a socket to use on the local host to connect to the database. This
record is used only by MySQL and is ignored by SQLite. Normally, if neither DB
Socket or DB Address are specified, MySQL will use the default socket.

DB Address = <address>
This is the host address of the database server. Normally, you would specify this instead
of DB Socket if the database server is on another machine. In that case, you will also
specify DB Port. This record is used only by MySQL and is ignored by SQLite if
provided. This record is optional.

DB Port = <port>
This defines the port to be used in conjunction with DB Address to access the database
if it is on another machine. This record is used only by MySQL and is ignored by SQLite
if provided. This record is optional.

The following is an example of a valid Catalog resource definition:

Catalog
{
 Name = SQLite
 dbname = bacula;
 user = bacula;
 password = "" # no password = no security
}

or for a Catalog on another machine:

Catalog

The Catalog Resource 72

{
 Name = MySQL
 dbname = bacula
 user = bacula
 password = ""
 DB Address = remote.acme.com
 DB Port = 1234
}

Bacula Storage Management System

The Catalog Resource 73

The Messages Resource
For the details of the Messages Resource, please see the Messages Resource Chapter of this
manual.

The Messages Resource 74

The Counter Resource
The Counter Resource defines a counter variable that can be accessed by variable expansion used
for creating Volume labels with the LabelFormat record. See the LabelFormat record in this
chapter for more details.

Counter
Start of the Counter record. Counter records are optional.

Name = <name>
The name of the Counter. This is the name you will use in the variable expansion to
reference the counter value.

Minimum = <integer>
This specifies the minimum value that the counter can have. It also becomes the default.
If not supplied, zero is assumed.

Maximum = <integer>
This is the maximum value value that the counter can have. If not specified or set to
zero, the counter can have a maximum value of 2,147,483,648 (2 to the 31 power). When
the counter is incremented past this value, it is reset to the Minimum.

*WrapCounter = <counter−name>
If this value is specified, when the counter is incremented past the maximum and thus
reset to the minimum, the counter specified on the WrapCounter is incremented. (This
is not currently implemented).

Catalog = <catalog−name>
If this record is specified, the counter and its values will be saved in the specified
catalog. If this record is not present, the counter will be redefined each time that Bacula
is started.

The Counter Resource 75

A Complete Example Director Configuration
File
An example Director configuration file might be the following:

#
Default Bacula Director Configuration file
#
The only thing that MUST be changed is to add one or more
file or directory names in the Include directive of the
FileSet resource.
#
For Bacula release 1.15 (5 March 2002) −− redhat
#
You might also want to change the default email address
from root to your address. See the "mail" and "operator"
directives in the Messages resource.
#

Director { \# define myself
 Name = rufus−dir
 QueryFile = "/home/kern/bacula/bin/query.sql"
 WorkingDirectory = "/home/kern/bacula/bin/working"
 PidDirectory = "/home/kern/bacula/bin/working"
 Password = "XkSfzu/Cf/wX4L8Zh4G4/yhCbpLcz3YVdmVoQvU3EyF/"
}

Define the backup Job
Job {
 Name = "NightlySave"
 Type = Backup
 Level = Incremental # default
 Client=rufus−fd
 FileSet="Full Set"
 Schedule = "WeeklyCycle"
 Storage = DLTDrive
 Messages = Standard
 Pool = Default
}

Job {
 Name = "Restore"
 Type = Restore
 Client=rufus−fd
 FileSet="Full Set"
 Where = /tmp/bacula−restores
 Storage = DLTDrive
 Messages = Standard
 Pool = Default
}

List of files to be backed up
FileSet {
 Name = "Full Set"
 Include = signature=SHA1 {
#
Put your list of files here, one per line or include an

 A Complete Example Director Configuration File 76

external list with:
#
@file−name
#
Note: / backs up everything

 /

 }
 Exclude = { }
}

When to do the backups
Schedule {
 Name = "WeeklyCycle"
 Run = Full sun at 1:05
 Run = Incremental mon−sat at 1:05
}

Client (File Services) to backup
Client {
 Name = rufus−fd
 Address = rufus
 Catalog = MyCatalog
 Password = "MQk6lVinz4GG2hdIZk1dsKE/LxMZGo6znMHiD7t7vzF+"
 File Retention = 60d \# sixty day file retention
 Job Retention = 1y \# 1 year Job retention
 AutoPrune = yes \# Auto apply retention periods
}

Definition of DLT tape storage device
Storage {
 Name = DLTDrive
 Address = rufus
 Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"
 Device = "HP DLT 80" \# same as Device in Storage daemon
 Media Type = DLT8000 \# same as MediaType in Storage daemon
}

Definition of DDS tape storage device
Storage {
 Name = SDT−10000
 Address = rufus
 Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"
 Device = SDT−10000 \# same as Device in Storage daemon
 Media Type = DDS−4 \# same as MediaType in Storage daemon
}

Definition of 8mm tape storage device
Storage {
 Name = "8mmDrive"
 Address = rufus
 Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"
 Device = "Exabyte 8mm"
 MediaType = "8mm"
}

Definition of file storage device
Storage {
 Name = File

Bacula Storage Management System

 A Complete Example Director Configuration File 77

 Address = rufus
 Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"
 Device = FileStorage
 Media Type = File
}

Generic catalog service
Catalog {
 Name = MyCatalog
 dbname = bacula; user = bacula; password = ""
}

Reasonable message delivery −− send most everything to email address
and to the console
Messages {
 Name = Standard
 mail = root@localhost = all, !skipped, !terminate
 operator = root@localhost = mount
 console = all, !skipped, !saved
}

Default pool definition
Pool {
 Name = Default
 Pool Type = Backup
 AutoPrune = yes
 Recycle = yes
}

Bacula Configuration Index Client/File daemon Configuration

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 5.2

Director Configuration Index Storage Daemon Configuration

Bacula Storage Management System

 A Complete Example Director Configuration File 78

http://www.bacula.org/

Client/File daemon Configuration

General

The Client (or File Daemon) Configuration is one of the simpler ones to specify. Generally, other
than changing the Client name so that error messages are easily identified, you will not need to
modify the default Client configuration file.

For a general discussion of configuration file and resources including the data types recognized
by Bacula, please see the Configuration chapter of this manual. The following Client Resource
definitions must be defined:

Client −− to define what Clients are to be backed up.•
Director −− to define the Director's name and its access password.•
Messages −− to define where error and information messages are to be sent.•

Client/File daemon Configuration 79

The Client Resource
The Client Resource (or FileDaemon) resource defines the name of the Client (as used by the
Director) as well as the port on which the Client listens for Director connections.

Client (or FileDaemon)
Start of the Client records. There must be one and only one Client resource in the
configuration file, since it defines the properties of the current client program.

Name = <name>
The client name that must be used by the Director when connecting. Generally, it is a
good idea to use a name related to the machine so that error messages can be easily
identified if you have multiple Clients. This record is required.

Working Directory = <Directory>
This directive is mandatory and specifies a directory in which the File daemon may put
its status files. This directory should be used only by Bacula, but may be shared by other
Bacula daemons. This record is required

Pid Directory = <Directory>
This directive is mandatory and specifies a directory in which the Director may put its
process Id file files. The process Id file is used to shutdown Bacula and to prevent
multiple copies of Bacula from running simultaneously. This record is required.
Standard shell expansion of the Directory is done when the configuration file is read so
that values such as $HOME will be properly expanded.
Typically on Linux systems, you will set this to: /var/run. If you are not installing
Bacula in the system directories, you can use the Working Directory as defined above.

Heartbeat Interval = <time−interval>
This record defines an interval of time. For each heartbeat that the File daemon receives
from the Storage daemon, it will forward it to the Director. In addition, if no heartbeat
has been received from the Storage daemon and thus forwarded the File daemon will
send a heartbeat signal to the Director and to the Storage daemon to keep the channels
active. The default interval is zero which disables the heartbeat. This feature is
particularly useful if you have a router such as 3Com that does not follow Internet
standards and times out an inactive connection after a short duration.

Maximum Concurrent Jobs = <number>
where <number> is the maximum number of Jobs that should run concurrently. The
default is set to 2, but you may set it to a larger number. Each contact from the Director
(e.g. status request, job start request) is considered as a Job, so if you want to be able to
do a status request in the console at the same time as a Job is running, you will need to
set this value greater than 1.

FDPort = <port−number>
This specifies the port number on which the Client listens for Director connections. It
must agree with the FDPort specified in the Client resource of the Director's
configuration file. The default is 9102.

FDAddress = <IP−Address>
This record is optional, and if it is specified, it will cause the File daemon server (for
Director connections) to bind to the specified IP−Address, which is either a domain
name or an IP address specified as a dotted quadruple. If this record is not specified, the
File daemon will bind to any available address (the default).

SDConnectTimeout = <time−interval>

The Client Resource 80

This record defines an interval of time that the File daemon will try to connect to the
Storage daemon. The default is 30 minutes. If no connection is made in the specified
time interval, the File daemon cancels the Job.

The following is an example of a valid Client resource definition:

Client { # this is me
 Name = rufus−fd
 WorkingDirectory = $HOME/bacula/bin/working
 Pid Directory = $HOME/bacula/bin/working
}

Bacula Storage Management System

The Client Resource 81

The Director Resource
The Director resource defines the name and password of the Directors that are permitted to
contact this Client.

Director
Start of the Director records. There may be any number of Director resources in the
Client configuration file. Each one specifies a Director that is allowed to connect to this
Client.

Name = <name>
The name of the Director that may contact this Client. This name must be the same as the
name specified on the Director resource in the Director's configuration file. This record
is required.

Password = <password>
Specifies the password that must be supplied for a Director to be authorized. This
password must be the same as the password specified in the Client resource in the
Director's configuration file. This record is required.

Thus multiple Directors may be authorized to use this Client's services. Each Director will have a
different name, and normally a different password as well.

The following is an example of a valid Director resource definition:

#
List Directors who are permitted to contact the File daemon
#
Director {
 Name = HeadMan
 Password = very_good \# password HeadMan must supply
}

Director {
 Name = Worker
 Password = not_as_good
}

The Director Resource 82

The Message Resource
Please see the Messages Resource Chapter of this manual for the details of the Messages
Resource.

There must be at least one Message resource in the Client configuration file.

The Message Resource 83

Example Client Configuration File
An example File Daemon configuration file might be the following:

#
Default Bacula File Daemon Configuration file
#
For Bacula release 1.15 (5 March 2002) −− redhat 7.1
#
There is not much to change here except perhaps to
set the Director's name and File daemon's name
to something more appropriate for your site.
#

#
List Directors who are permitted to contact this File daemon
#
Director {
 Name = rufus−dir
 Password = "/LqPRkX++saVyQE7w7mmiFg/qxYc1kufww6FEyY/47jU"
}

#
"Global" File daemon configuration specifications
#
FileDaemon { \# this is me
 Name = rufus−fd
 WorkingDirectory = $HOME/bacula/bin/working
 Pid Directory = $HOME/bacula/bin/working
}

Send all messages except skipped files back to Director
Messages {
 Name = Standard
 director = rufus−dir = all, !skipped
}

Director Configuration Index Storage Daemon Configuration

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 5.3

Client/File daemon Configuration Index Messages Resource

Example Client Configuration File 84

http://www.bacula.org/

Storage Daemon Configuration

General

The Storage Daemon configuration file has relatively few resource definitions. However, due to
the great variation in backup media and system capabilities, the storage daemon must be highly
configurable. As a consequence, there are quite a large number of record types in the Device
Resource definition that allow you to define all the characteristics of your Storage device
(normally a tape drive). Fortunately, with modern storage devices, very few records are actually
needed.

Examples of Device resource records that are known to work for a number of common tape
drives can be found in the <bacula−src>/examples/devices directory.

For a general discussion of configuration file and resources including the data types recognized
by Bacula, please see the Configuration chapter of this manual. The following Storage Resource
definitions must be defined:

Storage −− to define the name of the Storage daemon.•
Director −− to define the Director's name and his access password.•
Device −− to define the characteristics of your storage device (tape drive).•
Messages −− to define where error and information messages are to be sent.•

Storage Resource

In general, the properties specified under the Storage resource define global properties of the
Storage daemon. Each Storage daemon configuration file must have one and only one Storage
resource definition.

Name = <Storage−Daemon−Name>
Specifies the Name of the Storage daemon. This record is required.

Working Directory = <Directory>
This directive is mandatory and specifies a directory in which the Storage daemon may
put its status files. This directory should be used only by Bacula, but may be shared by
other Bacula daemons. This record is required

Pid Directory = <Directory>
This directive is mandatory and specifies a directory in which the Director may put its
process Id file files. The process Id file is used to shutdown Bacula and to prevent
multiple copies of Bacula from running simultaneously. This record is required.
Standard shell expansion of the Directory is done when the configuration file is read so
that values such as $HOME will be properly expanded.
Typically on Linux systems, you will set this to: /var/run. If you are not installing
Bacula in the system directories, you can use the Working Directory as defined above.

Heartbeat Interval = <time−interval>
This record defines an interval of time. When the Storage daemon is waiting for the
operator to mount a tape, each time interval, it will send a heartbeat signal to the File
daemon. The default interval is zero which disables the heartbeat. This feature is
particularly useful if you have a router such as 3Com that does not follow Internet

Storage Daemon Configuration 85

standards and times out an inactive connection after a short duration.
Maximum Concurrent Jobs = <number>

where <number> is the maximum number of Jobs that should run concurrently. The
default is set to 2, but you may set it to a larger number. Each contact from the Director
(e.g. status request, job start request) is considered as a Job, so if you want to be able to
do a status request in the console at the same time as a Job is running, you will need to
set this value greater than 1.

SDPort = <port−number>
Specifies port number on which the Storage daemon listens for Director connections.
The default is 9103.

SDAddress = <IP−Address>
This record is optional, and if it is specified, it will cause the Storage daemon server (for
Director and File daemon connections) to bind to the specified IP−Address, which is
either a domain name or an IP address specified as a dotted quadruple. If this record is
not specified, the Storage daemon will bind to any available address (the default).

The following is a typical Storage daemon Storage definition.

#
"Global" Storage daemon configuration specifications appear
under the Storage resource.
#
Storage {
 Name = "Storage daemon"
 Address = localhost
 WorkingDirectory = "~/bacula/working"
 Pid Directory = "~/bacula/working"
}

Director Resource

The Director resource specifies the Name of the Director which is permitted to use the services
of the Storage daemon. There may be multiple Director resources. The Director Name and
Password must match the corresponding values in the Director's configuration file.

Name = <Director−Name>
Specifies the Name of the Director allowed to connect to the Storage daemon. This
record is required.

Password = <Director−password>
Specifies the password that must be supplied by the above named Director. This record
is required.

The following is an example of a valid Director resource definition:

Director {
 Name = MainDirector
 Password = my_secret_password
}

Bacula Storage Management System

Director Resource 86

Device Resource

The Device Resource specifies the details of each device (normally a tape drive) that can be used
by the Storage daemon. There may be multiple Device resources for a single Storage daemon. In
general, the properties specified within the Device resource are specific to the Device.

Name = Device−Name
Specifies the Name that the Director will use when asking to backup or restore to or from
to this device. This is the logical Device name, and may be any string up to 127
characters in length. It is generally a good idea to make it correspond to the English
name of the backup device. The physical name of the device is specified on the Archive
Device record described below. The name you specify here is also used in your
Director's conf file on the Device record in its Storage resource.

Archive Device = name−string
The specified name−string gives the system file name of the storage device managed by
this storage daemon. This will usually be the device file name of a removable storage
device (tape drive), for example "/dev/nst0" or "/dev/rmt/0mbn". When specifying a
tape device, it is preferable that the "non−rewind" variant of the device file name be
given. In addition, on systems such as Sun, which have modified the tape access
methods, you must be sure to specify to use Berkeley I/O conventions with the device.
The b in the Solaris (Sun) archive specification /dev/rmt/0mbn is what is needed in this
case. Bacula does not support SysV tape drive behavior.
As noted above, normally the Archive Device is the name of a tape drive, but you may
also specify a directory name. In that case, Bacula will write to file storage in the
specified directory, and the filename used will be the Volume name as specified in the
Catalog. If you want to write into more than one directory (i.e. to spread the load to
different disk drives), you will need to define two Device resources, each containing an
Archive Device with a different directory.

In addition to a tape device name or a directory name, Bacula will accept the name of a
FIFO. A FIFO is a special kind of file that connects two programs via kernel memory. If
a FIFO device is specified for a backup operation, you must have a program that reads
what Bacula writes into the FIFO. When the Storage daemon starts the job, it will wait
for MaximumOpenWait seconds for the read program to start reading, and then time it
out and terminate the job. As a consequence, it is best to start the read program at the
beginning of the job perhaps with the RunBeforeJob record. For this kind of device, you
never want to specify AlwaysOpen, because you want the Storage daemon to open it
only when a job starts, so you must explicitly set it to No. Since a FIFO is a one way
device, Bacula will not attempt to read a label of a FIFO device, but will simply write on
it. To create a FIFO Volume in the catalog, use the add command rather than then label
command to avoid attempting to write a label.

During a restore operation, if the Archive Device is a FIFO, Bacula will attempt to read
from the FIFO, so you must have an external program that writes into the FIFO. Bacula
will wait MaximumOpenWait seconds for the program to begin writing and will then
time it out and terminate the job. As noted above, you may use the RunBeforeJob to
start the writer program at the beginning of the job.

The Archive Device record is required.

Bacula Storage Management System

Device Resource 87

Changer Device = name−string
The specified name−string gives the system file name of the autochanger device name
that corresponds to the Archive Device specified. This device name is specified only if
you have an autochanger. Typically, you will want to specify the generic scsi device
name. For example, on Linux systems, for archive device /dev/nst0, This record is
optional. See the Using Autochangers chapter of this manual for more details of using
this and the following autochanger records.

Media Type = name−string
The specified name−string names the type of media supported by this device, for
example, "DLT7000". Media type names are arbitrary in that you set it to anything you
want, but must be known to the volume database to keep track of which storage daemons
can read which volumes. The same name−string must appear in the appropriate Storage
resource definition in the Director's configuration file. This specification is required for
all devices.

Autochanger = Yes|No
If Yes, this device is an automatic tape changer, and you should also specify a Changer
Device as well as a Changer Command. If No (default), the volume must be manually
changed. You might also want to add an identical record to the Storage resource in the
Director's configuration file so that when labeling tapes you are prompted for the slot.

Changer Command = name−string
The name−string specifies an external program to be called that will automatically
change volumes as required by Bacula. There are a number of substitution characters
that may be specified to configure your autochanger. For additional details, please see
the Autochangers chapter of this manual.

Maximum Changer Wait = time
This record specifies the maximum time for Bacula to wait for an autochanger to change
the volume. If this time is exceeded, Bacula will invalidate the Volume slot number
stored in the catalog and try again. If no additional changer volumes exist, Bacula will
ask the operator to intervene. The default time out is 120 seconds.

Always Open = Yes|No
If Yes (default), Bacula will always keep the device open unless specifically
unmounted by the Console program. This permits Bacula to ensure that the tape drive is
always available. If you set AlwaysOpen to no Bacula will only open the drive when
necessary, and at the end of the Job if no other Jobs are using the drive, it will be freed.
To minimize unnecessary operator intervention, it is highly recommended that Always
Open = yes. This also ensures that the drive is available when Bacula needs it.
If you have Always Open = yes (recommended) and you want to use the drive for
something else, simply use the unmount command in the Console program to release the
drive. However, don't forget to remount the drive with mount when the drive is available
or the next Bacula job will block.

For File storage, this record is ignored. For a FIFO storage device, you must set this to
No.

Maximum Open Wait = time

Bacula Storage Management System

Device Resource 88

This record specifies the maximum amount of time that Bacula will wait for a device
that is busy. The default is 5 minutes. If the device cannot be obtained, the current Job
will be terminated in error. Bacula will re−attempt to open the drive the next time a Job
starts that needs the the drive.

Removable media = Yes|No
If Yes, this device supports removable media (for example, tapes or CDs). If No, media
cannot be removed (for example, an intermediate backup area on a hard disk).

Random access = Yes|No
If Yes, the archive device is assumed to be a random access medium which supports the
lseek (or lseek64 if Largefile is enabled during configuration) facility.

Maximum block size = size−in−bytes
The Storage daemon will aways attempt to write blocks of the specified size−in−bytes to
the archive device. As a consequence, this statement specifies both the default block size
and the maximum block size. The size written never exceed the given size−in−bytes. If
adding data to a block would cause it to exceed the given maximum size, the block will
be written to the archive device, and the new data will begin a new block.
If no value is specified or zero is specified, the Storage daemon will use a default block
size of 64,512 bytes (126 * 512).

Minimum block size = size−in−bytes
This statement applies only to non−random access devices (e.g. tape drives). Blocks
written by the storage daemon to a non−random archive device will never be smaller
than the given size−in−bytes. The Storage daemon will attempt to efficiently fill blocks
with data received from active sessions but will, if necessary, add padding to a block to
achieve the required minimum size.
To force the block size to be fixed, as is normally the case for non−random access
devices (tape drives), set the Minimum block size and the Maximum block size to the
same value (zero included). The default is that both the minimum and maximum block
size are zero and the default block size is 64,512 bytes. If you wish the block size to be
fixed and different from the default, specify the same value for both Minimum block
size and Maximum block size.

For example, suppose you want a fixed block size of 100K bytes, then you would
specify:

 Minimum block size = 100K
 Maximum block size = 100K

If you want the block size to be variable but with a 64K minimum and 200K maximum
(and default as well), you would specify:

 Minimum block size = 64K
 Maximum blocksize = 200K

Hardware End of Medium = Yes|No
If No, the archive device is not required to support end of medium ioctl request, and the
storage daemon will use the forward space file function to find the end of the recorded

Bacula Storage Management System

Device Resource 89

data. If Yes, the archive device must support the ioctlMTEOM call, which will position
the tape to the end of the recorded data. Default is Yes. This function is used before
appending to a tape to ensure that no previously written data is lost. We recommend if
you have a non standard or unusual tape drive that you use the btape program to test
your drive to see whether or not it supports this function. All modern (after 1998) tape
drives support this feature.

BSF at EOM = Yes|No
If No, the default, no special action is taken by Bacula with the End of Medium (end of
tape) is reached because the tape will be positioned after the last EOF tape mark, and
Bacula can append to the tape as desired. However, on some systems, such as FreeBSD,
when Bacula reads the End of Medium (end of tape), the tape will be positioned after the
second EOF tape mark (two successive EOF marks indicated End of Medium). If Bacula
appends from that point, all the appended data will be lost. The solution for such systems
is to specify BSF at EOM which causes Bacula to backspace over the second EOF
mark. Determination of whether or not you need this record is done using the test
command in the btape program.

Backward Space Record = Yes|No
If Yes, the archive device supports the MTBSR ioctl to backspace records. If No, this
call is not used and the device must be rewound and advanced forward to the desired
position. Default is Yes for non random−access devices.

Backward Space File = Yes|No
If Yes, the archive device supports the MTBSF and MTBSF ioctls to backspace over an
end of file mark and to the start of a file. If No, these calls are not used and the device
must be rewound and advanced forward to the desired position. Default is Yes for non
random−access devices.

Forward Space Record = Yes|No
If Yes, the archive device must support the MTFSR ioctl to forward space over records.
If No, data must be read in order to advance the position on the device. Default is Yes for
non random−access devices.

Forward Space File = Yes|No
If Yes, the archive device must support the MTFSF ioctl to forward space by file
marks. If No, data must be read to advance the position on the device. Default is Yes for
non random−access devices.

Offline On Unmount = Yes|No
The default for this record is No. If Yes the archive device must support the MTOFFL
ioctl to rewind and take the volume offline. In this case, Bacula will issue the offline
(eject) request before closing the device during the unmount command. If No Bacula
will not attempt to offline the device before unmounting it. After an offline is issued, the
cassette will be ejected thus requiring operator intervention to continue, and on some
systems require an explicit load command to be issued (mt −f /dev/xxx load) before the
system will recognize the tape. If you are using an autochanger, some devices require an
offline to be issued prior to changing the volume. However, most devices do not and
may get very confused.

Maximum Volume Size = size

Bacula Storage Management System

Device Resource 90

No more than size bytes will be written onto a given volume on the archive device. This
record is used mainly in testing Bacula to simulate a small Volume. It can also be useful
if you wish to limit the size of a File Volume to say less than 2GB of data. In some rare
cases of really antiquated tape drives that do not properly indicate when the end of a tape
is reached during writing (though I have read about such drives, I have never personally
encountered one). Please note, this record is deprecated (being phased out) in favor of
the Maximum Volume Bytes defined in the Director's configuration file.

Maximum File Size = size
No more than size bytes will be written into a given logical file on the volume. Once this
size is reached, an end of file mark is written on the volume and subsequent data are
written into the next file. Breaking long sequences of data blocks with file marks permits
quicker positioning to the start of a given stream of data and can improve recovery from
read errors on the volume. The default is one Gigabyte.

Parallelism

Maximum Concurrent Jobs = positive integer
The storage daemon will accept no more than the given positive integer of simultaneous
connections. The default is 10. It is best to set this number fairly large (e.g. 10 or 20) and
control how many Jobs are running with the Maximum Concurrent Jobs in the Storage
resource in the Director's configuration file.

Capabilities

Label media = Yes|No
If Yes, permits this device to automatically label blank media without an explicit
operator command. It does so by using an internal algorithm as defined on the Label
Format record in each Pool resource. If this is No as by default, Bacula will label tapes
only by specific operator command (label in the Console) or when the tape has been
recycled. The automatic labeling feature is most useful when writing to disk rather than
tape volumes.

Automatic mount = Yes|No
If Yes (the default), permits the daemon to examine the device to determine if it contains
a Bacula labeled volume. This is done initially when the daemon is started, and then at
the beginning of each job. This record is particularly important if you have set Always
Open = no because it permits Bacula to attempt to read the device before asking the
system operator to mount a tape.

Messages Resource

For a description of the Messages Resource, please see the Messages Resource Chapter of this
manual.

Sample Storage Daemon Configuration File

A example Storage Daemon configuration file might be the following:

Bacula Storage Management System

Parallelism 91

#
Default Bacula Storage Daemon Configuration file
#
For Bacula release 1.15 (5 March 2002) −− redhat 7.1
#
You may need to change the name of your tape drive
on the "Archive Device" directive in the Device
resource. If you change the Name and/or the
"Media Type" in the Device resource, please ensure
that bacula−dir.conf has corresponding changes.
#

Storage { \# definition of myself
 Name = rufus−sd
 Address = rufus
 WorkingDirectory = "$HOME/bacula/bin/working"
 Pid Directory = "$HOME/bacula/bin/working"
}

#
List Directors who are permitted to contact Storage daemon
#
Director {
 Name = rufus−dir
 Password = "ZF9Ctf5PQoWCPkmR3s4atCB0usUPg+vWWyIo2VS5ti6k"
}

#
Devices supported by this Storage daemon
To connect, the Director's bacula−dir.conf must have the
same Name and MediaType.
#
Device {
 Name = "HP DLT 80"
 Media Type = DLT8000
 Archive Device = /dev/nst0
 AutomaticMount = yes; \# when device opened, read it
 AlwaysOpen = yes;
 RemovableMedia = yes;
}

#Device {
Name = SDT−7000
Media Type = DDS−2
Archive Device = /dev/nst0
AutomaticMount = yes; # when device opened, read it
AlwaysOpen = yes;
RemovableMedia = yes;
#}

#Device {
Name = Floppy
Media Type = Floppy
Archive Device = /mnt/floppy
RemovableMedia = yes;
Random Access = Yes;
AutomaticMount = yes; # when device opened, read it
AlwaysOpen = no;
#}

#Device {

Bacula Storage Management System

Parallelism 92

Name = FileStorage
Media Type = File
Archive Device = /tmp
LabelMedia = yes; # lets Bacula label unlabeled media
Random Access = Yes;
AutomaticMount = yes; # when device opened, read it
RemovableMedia = no;
AlwaysOpen = no;
#}

#
A very old Exabyte with no end of media detection
#
#Device {
Name = "Exabyte 8mm"
Media Type = "8mm"
Archive Device = /dev/nst0
Hardware end of medium = No;
AutomaticMount = yes; # when device opened, read it
AlwaysOpen = Yes;
RemovableMedia = yes;
#}

#
Send all messages to the Director,
mount messages also are sent to the email address
#
Messages {
 Name = Standard
 director = rufus−dir = all
 operator = root = mount
}

Client/File daemon Configuration Index Messages Resource

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Storage Daemon Configuration Index Console Configuration

Bacula Storage Management System

Parallelism 93

http://www.bacula.org/

Messages Resource

The Messages Resource

The Messages resource defines how messages are to be handled and destinations to which they
should be sent.

Even though each daemon has a full message handler, within the File daemon and the Storage
daemon, you will normally choose to send all the appropriate messages back to the Director. This
permits all the messages associated with a single Job to be combined in the Director and sent as a
single email message to the user, or logged together in a single file.

Each message that Bacula generates (i.e. that each daemon generates) has an associated type
such as INFO, WARNING, ERROR, etc. Using the message resource, you can specify which
message types you wish to see and where they should be sent. In addition, a message may be sent
to multiple destinations. For example, you may want all error messages both logged as well as
sent to you in an email. By defining multiple messages resources, you can have different
message handling for each type of Job (e.g. Full backups versus Incremental backups).

The records contained in a Messages resource consist of a destination specification followed by
a list of message−types in the format:

destination = message−type1, message−type2, message−type3, ...
or for those destinations that need and address specification (e.g. email):

destination = address = message−type1, message−type2, message−type3, ...
Where destination is one of a predefined set of keywords that define where the message
is to be sent (stdout, file, ...), message−type is one of a predefined set of keywords that
define the type of message generated by Bacula (ERROR, WARNING, FATAL, ...),
and address varies according to the destination keyword, but is typically and email
address or a filename.

The following are the list of the possible record definitions that can be used in a message
resource.

Messages
Start of the Messages records.

Name = <name>
The name of the Messages resource. The name you specify here will be used to tie this
Messages resource to a Job and/or to the daemon.

MailCommand = <command>
In the absence of this resource, Bacula will send all mail using the following command:
mail −s "Bacula Message" <recipients>

In many cases, depending on your machine, this command may not work. Using the
MailCommand, you can specify exactly how to send the mail. During the processing of
the command, normally specified as a quoted string, the following substitutions will be
used:

%% = %•

Messages Resource 94

%c = Client's name•
%d = Director's name•
%e = Job Exit code (OK, Error, ...)•
%i = Job Id•
%j = Unique Job name•
%l = Job level•
%n = Job name•
%r = Recipients•
%t = Job type (e.g. Backup, ...)•

The following is the command I (Kern) use. Note, the whole command should appear on
a single line in the configuration file rather than split as is done here for presentation:

mailcommand = "/home/kern/bacula/bin/smtp −h mail.whitehouse.com −f
\"\(Bacula\) %r\" −s \"Bacula: %t %e of %c %l\" %r"

Note, the smtp program is provided as part of Bacula. For additional details, please see
the smtp −− Customizing Your Email Messages section of the Bacula Utility Programs
chapter of this manual. Please test any mailcommand that you use to ensure that your
SMTP gateway accepts the addressing form that you use. Certain program such as Exim
can be very selective as to what forms are permitted particularly in the from part.

OperatorCommand = <command>
This resource specification is similar to the MailCommand except that it is used for
Operator messages. The substitutions performed for the MailCommand are also done
for this command. Normally, you will set this command to the same value as specified
for the MailCommand.

Debug = <debug−level>
This sets the debug message level to the debug level, which is an integer. Higher debug
levels cause more debug information to be produced. You are requested not to use this
record since it will be deprecated.

<destination> = <message−type1>, <message−type2...
Where destination may be one of the following:

stdout
Send the message to standard output.

stderr
Send the message to standard error.

console
Send the message to the console (Bacula Console). These messages are held
until the console program connects to the Director.

<destination> = <address> = <message−type1>, <message−type2...
Where address depends on the destination, which may be one of the following:

director
Send the message to the Director whose name is given in the address field.
Note, in the current implementation, the Director Name is ignored, and the
message is sent to the Director that started the Job.

file
Send the message to the filename given in the address field. If the file already
exists, it will be overwritten.

append

Bacula Storage Management System

Messages Resource 95

Append the message to the filename given in the address field. If the file
already exists, it will be appended to. If the file does not exist, it will be created.

syslog
Send the message to the system log (syslog) using the facility specified in the
address field. Note, for the moment, the address field is ignored and the
message is always sent to the LOG_ERR facility.

mail
Send the message to the email addresses that are given as a comma separated list
in the address field. Mail messages are grouped together during a job and then
sent as a single email message when the job terminates. The advantage of this
destination is that you are notified about every Job that runs. However, if you
backup 5 or 10 machines every night, the volume of email messages can be
important. Some users use filter programs such as procmail to automatically file
this email based on the Job termination code (see mailcommand).

mail on error
Send the message to the email addresses that are given as a comma separated list
in the address field if the Job terminates with an error condition. MailOnError
messages are grouped together during a job and then sent as a single email
message when the job terminates. This destination differs from the mail
destination in that if the Job terminates normally, the message is totally
discarded (for this destination). If the Job terminates in error, it is emailed. By
using other destinations such as append you can ensure that even if the Job
terminates normally, the output information is saved.

operator
Send the message to the email addresses that are specified as a comma separated
list in the address field. This is similar to mail above, except that each message
is sent as received. Thus there is one email per message. This is most useful for
mount messages (see below).

For any destination, the message−type field is a comma separated list of the following
types or classes of messages:

info
General information messages.

warning
Warning messages. Generally this is some unusual condition but not expected to
be serious.

error
Non−fatal error messages. The job continues running. Any error message should
be investigated as it means that something went wrong.

fatal
Fatal error messages. Fatal errors cause the job to terminate.

terminate
Message generated when the daemon shuts down.

saved
Files saved normally.

notsaved
Files not saved because of some error. Usually because the file cannot be
accessed (i.e. it does not exist or is not mounted).

skipped
Files that were skipped because of a user supplied option such as an incremental
backup or a file that matches an exclusion pattern. This is not considered an

Bacula Storage Management System

Messages Resource 96

error condition such as the files listed for the notsaved type because the
configuration file explicitly requests these types of files to be skipped. For
example, any unchanged file during an incremental backup, or any subdirectory
if the no recursion option is specified.

mount
Volume mount or intervention requests from the Storage daemon. These
requests require a specific operator intervention for the job to continue.

restored
The ls style listing generated for each file restored is sent to this message class.

all
All message types.

*security
Security info/warning messages (not currently implemented).

The following is an example of a valid Messages resource definition, where all messages except
files explicitly skipped or daemon termination messages are sent by email to
enforcement@sec.com. In addition all mount messages are sent to the operator (i.e. emailed to
enforcement@sec.com). Finally all messages other than explicitly skipped files and files saved
are sent to the console:

Messages {
 Name = Standard
 mail = enforcement@sec.com = all, !skipped, !terminate
 operator = enforcement@sec.com = mount
 console = all, !skipped, !saved
}

With the exception of the email address (changed to avoid junk mail from robot's), Kern's
Director's Messages resource is as follows. Note, the mailcommand and operatorcommand are
on a single line −− they had to be split for this manual:

Messages {
 Name = Standard
 mailcommand = "bacula/bin/smtp −h mail.whitehouse.com −f \"\(Bacula\) %r\"
 −s \"Bacula: %t %e of %c %l\" %r"
 operatorcommand = "bacula/bin/smtp −h mail.whitehouse.com −f \"\(Bacula\) %r\"
 −s \"Bacula: Intervention needed for %j\" %r"
 MailOnError = security@whitehouse.com = all, !skipped, !terminate
 append = "bacula/bin/log" = all, !skipped, !terminate
 operator = security@whitehouse.com = mount
 console = all, !skipped, !saved
}

Storage Daemon Configuration Index Console Configuration

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula Storage Management System

Messages Resource 97

http://www.bacula.org/

Bacula 1.32 User's Guide Chapter 5.4

Messages Resource Index Variable Expansion

Bacula Storage Management System

Messages Resource 98

Console Configuration

General

The Console configuration file is the simplest of all the configuration files, and in general, you
should not need to change it except for the password. It simply contains the information
necessary to contact the Director or Directors.

For a general discussion of configuration file and resources including the data types recognized
by Bacula, please see the Configuration chapter of this manual.

The following Console Resource definition must be defined:

Director −− to define the Director's name and his access password. Note, you may define
more than one Director resource in the Console configuration file. If you do so, the
Console program will ask you which one you want to use.

•

The Director Resource

The Director resource defines the attributes of the Director running on the network. You may
have multiple Director resource specifications in a single Console configuration file. If you have
more than one, you will be prompted to choose one when you start the Console program.

Director
Start of the Director records.

Name = <name>
The director name used by the system administrator. This name must be identical to the
Name specified in the Director resource of the Director's configuration file.

DIRPort = <port−number>
Specify the port to use to connect to the Director. This value will most likely already be
set to the value you specified on the −−with−base−port option of the ./configure
command. This port must be identical to the DIRport specified in the Director resource
of the Director's configuration file. The default is 9101 so this record is not normally
specified.

Address = <address>
Where the address is a host name, a fully qualified domain name, or a network address
used to connect to the Director.

Password = <password>
Where the password is the password needed for the Director to accept the Console
connection. This password must be identical to the Password specified in the Director
resource of the Director's configuration file. This record is required.

An actual example might be:

Director {
 Name = HeadMan
 address = rufus.cats.com
 password = xyz1erploit
}

Console Configuration 99

The ConsoleFont Resource

The ConsoleFont resource is available only in the GNOME version of the console. It permits you
to define the font that you want used to display in the main listing window.

ConsoleFont
Start of the ConsoleFont records.

Name = <name>
The name of the font.

Font = <X−Window Font Specification>
The string value given here defines the desired font. It is specified in the standard cryptic
X Window format. For example, the default specification is:
 Font = "−misc−fixed−medium−r−normal−*−*−130−*−*−c−*−iso8859−1"

Thanks to Phil Stracchino for providing the code for this feature.

An actual example might be:

ConsoleFont {
 Name = Default
 Font = "−misc−fixed−medium−r−normal−*−*−130−*−*−c−*−iso8859−1"
}

Console Commands

For more details on running the console and its commands, please see the Bacula Console
chapter of this manual.

Sample Console Configuration File

A example Console configuration file might be the following:

#
Bacula Console Configuration File
#

Director {
 Name = HeadMan
 address = "my_machine.my_domain.com"
 Password = Console_password
}

Messages Resource Index Variable Expansion

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula Storage Management System

Console Commands 100

http://www.bacula.org/

Bacula 1.32 User's Guide Chapter 5.5

Console Configuration Index Running Bacula

Bacula Storage Management System

Console Commands 101

Variable Expansion
Variable expansion is somewhat similar to Unix shell variable expansion. Currently (version
1.31), it is used only in format labels, but in the future, it will most likely be used in more places.

General Functionality

This is basically a string expansion capability that permits referencing variables, indexing arrays,
conditional replacement of variables, case conversion, substring selection, regular expression
matching and replacement, character class replacement, padding strings, repeated expansion in a
user controlled loop, support of arithmetic expressions in the loop start, step and end conditions,
and recursive expansion.

For example, ${HOME} will be replaced by your home directory as defined in the environment.
If you have defined the variable xxx to be Test, then the reference ${xxx:p/7/Y/r} will right pad
the contents of xxx to a length of seven characters filling with the character Y giving YYYTest.

Bacula Variables

Within Bacula, there are three main classes of variables with some minor variations within the
classes. The classes are:

Counters
Counters are defined by the Counter resources in the Director's conf file. The counter
can either be a temporary counter that lasts for the duration of Bacula's execution, or it
can be a variable that is stored in the catalog, and thus retains its value from one Bacula
execution to another. Counter variables may be incremented by postfixing a plus sign (+
after the variable name).

Internal Variables
Internal variables are read−only, and may be related to the current job (i.e. Job name), or
may be special variables such as the date and time. The following variables are available:

Year −− the full year♦
Month −− the current month 1−12♦
Day −− the day of the month 1−31♦
Hour −− the hour 0−24♦
Minute −− the current minute 0−59♦
Second −− the current second 0−59♦
WeekDay −− the current day of the week 0−6 with 0 being Sunday♦
Job −− the job name♦
Dir −− the Director's name♦
Level −− the Job Level♦
Type −− the Job type♦
JobId −− the JobId♦
JobName −− the unique job name composed of Job and date♦
Storage −− the Storage daemon's name♦
Client −− the Client's name♦
NumVols −− the current number of Volumes in the Pool♦
Pool −− the Pool name♦

Variable Expansion 102

Catalog −− the Catalog name♦
MediaType −− the Media Type♦

Environment Variables
Environment variables are read−only, and must be defined in the environment prior to
executing Bacula. Environment variables may be either scalar or an array, where the
elements of the array are referenced by subscripting the variable name (e.g.
${Months[3]}). Environment variable arrays are defined by separating the elements with
a vertical bar (|), thus set Months="Jan|Feb|Mar|Apr|..." defines an environment
variable named Month that will be treated as an array, and the reference ${Months[3]}
will yield Mar. The elements of the array can have differing lengths.

Full Syntax

Since the syntax is quite extensive, below, you will find the pseudo BNF. The special characters
have the following meaning:

 ::= definition
 () grouping if the parens are not quoted
 | separates alternatives
 '/' literal / (or any other character)
 CAPS a character or character sequence
 * preceding item can be repeated zero or more times
 ? preceding item can appear zero or one time
 + preceding item must appear one or more times

And the pseudo BNF describing the syntax is:

 input ::= (TEXT
 | variable
 | INDEX_OPEN input INDEX_CLOSE (loop_limits)?
)*

 variable ::= DELIM_INIT (name|expression)

 name ::= (NAME_CHARS)+

 expression ::= DELIM_OPEN
 (name|variable)+
 (INDEX_OPEN num_exp INDEX_CLOSE)?
 (':' command)*
 DELIM_CLOSE

 command ::= '−' (TEXT_EXP|variable)+
 | '+' (TEXT_EXP|variable)+
 | 'o' NUMBER ('−'|',') (NUMBER)?
 | '#'
 | '*' (TEXT_EXP|variable)+
 | 's' '/' (TEXT_PATTERN)+
 '/' (variable|TEXT_SUBST)*
 '/' ('m'|'g'|'i'|'t')*
 | 'y' '/' (variable|TEXT_SUBST)+
 '/' (variable|TEXT_SUBST)*
 '/'
 | 'p' '/' NUMBER
 '/' (variable|TEXT_SUBST)*
 '/' ('r'|'l'|'c')
 | '%' (name|variable)+

Bacula Storage Management System

Full Syntax 103

 ('(' (TEXT_ARGS)? ')')?
 | 'l'
 | 'u'

 num_exp ::= operand
 | operand ('+'|'−'|'*'|'/'|'%') num_exp

 operand ::= ('+'|'−')? NUMBER
 | INDEX_MARK
 | '(' num_exp ')'
 | variable

 loop_limits ::= DELIM_OPEN
 (num_exp)? ',' (num_exp)? (',' (num_exp)?)?
 DELIM_CLOSE

 NUMBER ::= ('0'|...|'9')+

 TEXT_PATTERN::= (^('/'))+
 TEXT_SUBST ::= (^(DELIM_INIT|'/'))+
 TEXT_ARGS ::= (^(DELIM_INIT|')'))+
 TEXT_EXP ::= (^(DELIM_INIT|DELIM_CLOSE|':'|'+'))+
 TEXT ::= (^(DELIM_INIT|INDEX_OPEN|INDEX_CLOSE))+

 DELIM_INIT ::= '$'
 DELIM_OPEN ::= '{'
 DELIM_CLOSE ::= '}'
 INDEX_OPEN ::= '['
 INDEX_CLOSE ::= ']'
 INDEX_MARK ::= '#'
 NAME_CHARS ::= 'a'|...|'z'|'A'|...|'Z'|'0'|...|'9'

Semantics

The items listed in command above, which always follow a colon (:) have the following
meanings:

 − perform substitution if variable is empty
 + perform substitution if variable is not empty
 o cut out substring of the variable value
 # length of the variable value
 * substitute empty string if the variable value is not empty,
 otherwise substitute the trailing parameter
 s regular expression search and replace. The trailing
 options are: m = multiline, i = case insensitive,
 g = global, t = plain text (no regexp)
 y transpose characters from class A to class B
 p pad variable to l = left, r = right or c = center,
 with second value.
 % special function call (none implemented)
 l lower case the variable value
 u upper case the variable value

The loop_limits are start, step, and end values.

A counter variable name followed immediately by a plus (+) will cause the counter to be
incremented by one.

Bacula Storage Management System

Semantics 104

Examples

To create an ISO date:

 DLT−${Year}−${Month:p/2/0/r}−${Day:p/2/0/r}

on 20 June 2003 would give DLT−2003−06−20

If you set the environment variable mon to January|February|March|April|May|...

 File−${mon[${Month}]}/${Day}/${Year}

on the first of March would give File−March/1/2003

Console Configuration Index Running Bacula

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 6

Variable Expansion Index The Console Program

Bacula Storage Management System

Examples 105

http://www.bacula.org/

Running Bacula
The general flow of running Bacula is:

cd <install−directory>1.
Start the Database (if using MySQL)2.
Start the Daemons with ./bacula start3.
Start the Console program to interact with the Director4.
Run a job5.
When the tape fills, unmount the old tape, label a new one, and continue running6.
Test recovering some files from the tape just written to ensure the tape is good and that
you know how to recover. Better test before disaster strikes

7.

Add a second client.8.

Each of these steps is described in more detail below.

Before Running Bacula

Before running Bacula for the first time, we recommend that you run the test command in the
btape program as described in the Utility Program Chapter of this manual. This will help ensure
that Bacula functions correctly with your tape drive. If you have a modern HP, Sony, or
Quantum DDS or DLT tape drive running on Linux or Solaris, you can probably skip this test as
Bacula is well tested with these drives and systems. For all other cases, you are strongly
encouraged to run the test before continuing. btape also has a fill command that attempts to
duplicate what Bacula does when filling a tape and writing on the next tape. You should consider
trying this command as well, but be fore warned, it can take hours (about 4 hours on my drive) to
fill a large capacity tape.

Starting the Database

If you are using MySQL as the Bacula database, you should start it before you attempt to run a
job to avoid getting error messages from Bacula when it starts. The scripts startmysql and
stopmysql are what I (Kern) use to start and stop my local MySQL. Note, if you are using
SQLite, you will not want to use startmysql or stopmysql. If you are running this in production,
you will probably want to find some way to automatically start MySQL after each system reboot.

If you are using SQLite (i.e. you specified the −−with−sqlite=xxx option on the ./configure
command, you need do nothing. SQLite is automatically started by Bacula.

Starting the Daemons

To start the three daemons, from your installation directory, simply enter:

./bacula start

This script starts the Storage daemon, the File daemon, and the Director daemon, which all
normally run as daemons in the background.

Running Bacula 106

Note, on Windows, currently only the File daemon is ported, and it must be started differently.
Please see the Windows Version of Bacula Chapter of this manual.

The installation chapter of this manual explains how you can install scripts that will
automatically restart the daemons when the system starts.

Daemon Command Line Options

Each of the three daemons (Director, File, Storage) accepts a small set of options on the
command line. In general, each of the daemons as well as the Console program accepts the
following options:

−c <file>
Define the file to use as a configuration file. The default is the daemon name followed by
.conf i.e. bacula−dir.conf for the Director, bacula−fd.conf for the File daemon, and
bacula−sd for the Storage daemon.

−d nn
Set the debug level to nn. Higher levels of debug cause more information to displayed on
STDOUT concerning what the daemon is doing.

−f
Run the daemon in the foreground. This option is needed to run the daemon under the
debugger.

−s
Do not trap signals. This option is needed to run the daemon under the debugger.

−t
Read the configuration file and print any error messages, then immediately exit. Useful
for syntax testing of new configuration files.

−v
Be more verbose or more complete in printing error and informational messages.
Recommended.

−?
Print the version and list of options.

The Director has the following additional Director specific option:

−r <job>
Run the named job immediately. This is for debugging and should not be used.

The File daemon has the following File daemon specific option:

−i
Assume that the daemon is called from inetd or xinetd. In this case, the daemon assumes
that a connection has already been made and that it is passed as STDIN. After the
connection terminates the daemon will exit.

The Storage daemon has no Storage daemon specific options.

The Console program has no console specific options.

Bacula Storage Management System

Daemon Command Line Options 107

Interacting with the Director to Query or Start Jobs

To communicate with the director and to query the state of Bacula or run jobs, from the top level
directory, simply enter:

./console

Alternatively, if you have GNOME installed and used the −−enable−gnome on the configure
command, you may use the GNOME Console program:

./gnome−console

For simplicity, here we will describe only the ./console program. Most of what is described here
applies equally well to ./gnome−console.

The ./console runs the Bacula Console program, which connects to the Director daemon. Since
Bacula is a network program, you can run the Console program anywhere on your network.
Most frequently, however, one runs it on the same machine as the Director. Normally, the
Console program will print something similar to the following:

[kern@polymatou bin]$./console
Connecting to Director lpmatou:9101
1000 OK: HeadMan Version: 1.30 (28 April 2003)
*

the asterisk is the console command prompt.

Type help to see a list of available commands:

*help
 Command Description
 ======= ===========
 add add media to a pool
 autodisplay autodisplay [on/off] −− console messages
 automount automount [on/off] −− after label
 cancel cancel job=nnn −− cancel a job
 create create DB Pool from resource
 delete delete [pool=<pool−name> | media volume=<volume−name>]
 estimate performs FileSet estimate debug=1 give full listing
 exit exit = quit
 help print this command
 label label a tape
 list list [pools | jobs | jobtotals | media <pool> |
 files job=<nn>]; from catalog
 llist full or long list like list command
 messages messages
 mount mount <storage−name>
 prune prune expired records from catalog
 purge purge records from catalog
 query query catalog
 quit quit
 relabel relabel a tape
 release release <storage−name>
 restore restore files
 run run <job−name>

Bacula Storage Management System

Interacting with the Director to Query or Start Jobs 108

 setdebug sets debug level
 show show (resource records) [jobs | pools | ... | all]
 sqlquery use SQL to query catalog
 status status [storage | client]=<name>
 time print current time
 unmount unmount <storage−name>
 update update Volume or Pool
 use use catalog xxx
 var does variable expansion
 version print Director version
 wait wait until no jobs are running
*

Details of the console program's commands are explained in the Console Chapter of this manual.

Have Patience When Starting the Daemons or Mounting
Blank Tapes

When you start the Bacula daemons, the Storage daemon attempts to open all defined storage
devices and verify the currently mounted Volume (if configured). Until all the storage devices
are verified, the Storage daemon will not accept connections from the Console program. If a tape
was previously used, it will be rewound, and on some devices this can take several minutes. As a
consequence, you may need to have a bit of patience when first contacting the Storage daemon
after starting the daemons. If you can see your tape drive, once the lights stop flashing, the drive
will be ready to be used.

The same considerations apply if you have just mounted a blank tape in a drive such as an HP
DLT. It can take a minute or two before the drive properly recognizes that the tape is blank. If
you attempt to mount the tape with the Console program during this recognition period, it is
quite possible that you will hang your SCSI driver (at least on my RedHat Linux system). As a
consequence, you are again urged to have patience when inserting blank tapes. Let the device
settle down before attempting to access it.

Last Steps Before Running a Job

There are only three more steps before you can run a job.

Create a Pool to hold Volume names. Bacula will automatically create all Pools you
defined in the Director's configuration file.

1.

You must label one or more Volume. That is physically write a label on the tape
Volume. This can be done "on the fly" if you wish.

2.

You must add one or more Volume names (tapes, or files) to the Pool database. If you
use the label command, this last step will automatically be done.

3.

Creating a Pool

Creating the Pool is automatically done when Bacula starts, so if you understand Pools, you can
skip to the next section.

When you run a job, one of the things that Bacula must know is what Volumes to use to backup
the FileSet. Instead of specifying a Volume (tape) directly, you specify which Pool of Volumes

Bacula Storage Management System

Have Patience When Starting the Daemons or Mounting Blank Tapes 109

you want Bacula to consult when it wants a tape for writing backups. Bacula will select the first
available Volume from the Pool that is appropriate for the Storage device you have specified for
the Job being run. When a volume has filled up with data, Bacula will change its VolStatus from
Append to Full, and then Bacula will use the next volume and so on. If no appendable Volume
exists in the Pool, the Director will attempt to recycle an old Volume, if there are still no
appendable Volumes available, Bacula will send a message requesting the operator to create an
appropriate Volume.

Bacula keeps track of the Pool name, the volumes contained in the Pool, and a number of
attributes of each of those Volumes.

When Bacula starts, it ensures that all Pool resource definitions have been recorded in the
catalog. You can verify this by entering:

list pools

to the console program, which should print something like the following:

*list pools
Using default Catalog name=MySQL DB=bacula
+−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+
| PoolId | Name | NumVols | MaxVols | PoolType | LabelFormat |
+−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+
| 1 | Default | 3 | 0 | Backup | * |
| 2 | File | 12 | 12 | Backup | File |
+−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+
*

If you attempt to create the same Pool name a second time, Bacula will print:

Error: Pool Default already exists.

Once created, you may use the update command to modify many of the values in the Pool
record.

Labeling Your Volumes

Bacula requires that each Volume contain a software label. There are several strategies for
labeling volumes. The one I use is to label them as they are needed by Bacula using the console
program. That is when Bacula needs a new Volume, and it does not find one in the catalog, it
will send me an email message requesting that I add Volumes to the Pool. I then use the label
command in the Console program to label a new Volume and to define it in the Pool database,
after which Bacula will begin writing on the new Volume. Alternatively, I can use the Console
relabel command to relabel a Volume that is no longer used providing it has VolStatus Purged.

Another strategy is to label a set of volumes at the start, then use them as Bacula requests them.
This is most often done if you are cycling through a set of tapes, for example using an
autochanger. For more details on recycling, please see the Automatic Volume Recycling chapter
of this manual.

If you run a Bacula job, and you have no labeled tapes in the Pool, Bacula will inform you, and
you can create them "on−the−fly" so to speak. In my case, I label my tapes with the date, for

Bacula Storage Management System

Labeling Your Volumes 110

example: DLT−18April02. See below for the details of using the label command.

Labeling Volumes with the Console Program

Labeling volumes is normally done by using the console program.

./console1.
label2.

If Bacula complains that you cannot label the tape because it is already labeled, simply unmount
the tape using the unmount command in the console, then physically mount a blank tape and
re−issue the label command.

Since the physical storage media is different for each device, the label command will provide
you with a list of the defined Storage resources such as the following:

The defined Storage resources are:
 1: Floppy
 2: File
 3: 8mmDrive
 4: DLTDrive
 5: SDT−10000
Select Storage resource (1−5):

At this point, you should have a blank tape in the drive corresponding to the Storage resource
that you select.

It will then ask you for the Volume name.

Enter new Volume name:

If Bacula complains:

Media record for Volume xxxx already exists.

It means that the volume name xxxx that you entered already exists in the Media database. You
can list all the defined Media (Volumes) with the list media command. Note, the LastWritten
column has been truncated for proper printing.

+−−−−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−/~/−+−−−−−−−−−−−−+−−−−−−−−−+
| VolumeName | MediaType | VolStatus | VolBytes | LastWri | VolReten | Recycle |
+−−−−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−+
DLTVol0002	DLT8000	Purged	56,128,042,217	2001−10	31,536,000	0
DLT−07Oct2001	DLT8000	Full	56,172,030,586	2001−11	31,536,000	0
DLT−08Nov2001	DLT8000	Full	55,691,684,216	2001−12	31,536,000	0
DLT−01Dec2001	DLT8000	Full	55,162,215,866	2001−12	31,536,000	0
DLT−28Dec2001	DLT8000	Full	57,888,007,042	2002−01	31,536,000	0
DLT−20Jan2002	DLT8000	Full	57,003,507,308	2002−02	31,536,000	0
DLT−16Feb2002	DLT8000	Full	55,772,630,824	2002−03	31,536,000	0
DLT−12Mar2002	DLT8000	Full	50,666,320,453	1970−01	31,536,000	0
DLT−27Mar2002	DLT8000	Full	57,592,952,309	2002−04	31,536,000	0
DLT−15Apr2002	DLT8000	Full	57,190,864,185	2002−05	31,536,000	0
DLT−04May2002	DLT8000	Full	60,486,677,724	2002−05	31,536,000	0
DLT−26May02	DLT8000	Append	1,336,699,620	2002−05	31,536,000	1

Bacula Storage Management System

Labeling Volumes with the Console Program 111

+−−−−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−/~/−+−−−−−−−−−−−−+−−−−−−−−−+

Once Bacula has verified that the volume does not already exist, it will then prompt you for the
name of the Pool in which the Volume (tape) to be created. If there is only one Pool (Default), it
will be automatically selected.

If the tape is successfully labeled, a media record will also be created in the Pool. That is the
Volume name and all its other attributes will appear when you list the Pool. In addition, that
Volume will be available for backup if the MediaType matches what is requested by the Storage
daemon.

When you labeled the tape, you answered very few questions about it −− principally the Volume
name, and perhaps the Slot. However, a Volume record in the catalog database (internally known
as a Media record) contains quite a few attributes. Most of these attributes will be filled in from
the default values that were defined in the Pool (i.e. the Pool holds most of the default attributes
used when creating a Volume).

It is also possible to add media to the pool without physically labeling the Volumes. This can be
done with the add command. For more information, please see the Console Chapter of this
manual.

Running a Job

At this point, we assume you have done the following:

Configured Bacula with ./configure −−your−options•
Built Bacula using make•
Installed Bacula using make install•
Have created your database with, for example, ./create_sqlite_database•
Have created the Bacula database tables with, ./make_bacula_tables•
Have possibly edited your bacula−dir.conf file to personalize it a bit. BE CAREFUL! if
you change the Director's name or password, you will need to make similar
modifications in the other .conf files. For the moment it is probably better to make the
minimum changes.

•

You have started Bacula with ./bacula start•
You have invoked the Console program with ./console•

Furthermore, we assume for the moment you are using the default configuration files.

At this point, enter the following command:

show filesets

and you should get something similar to:

FileSet: name=Full Set
 Inc: /home/kern/bacula/bacula−1.30
 Exc: /proc
 Exc: /tmp
 Exc: /.journal
 Exc: /.fsck
FileSet: name=Catalog

Bacula Storage Management System

Running a Job 112

 Inc: /home/kern/bacula/testbin/working/bacula.sql

This is a pre−defined FileSet that will backup the Bacula source directory. The actual directory
names printed should correspond to your configuration. For testing purposes, we have chosen a
directory of moderate size (about 40 Megabytes) and complexity without being too big. The
FileSet Catalog is used for backing up Bacula's catalog and is not of interest to us for the
moment. The Inc: entries are the files or directories that will be included in the backup and the
Exc: are those that will be excluded.

Now is the time to run your first backup job. We are going to backup your Bacula source
directory to a File Volume in your /tmp directory just to show you how easy it is. Now enter:

status dir

and you should get the following output:

rufus−dir Version: 1.30 (28 April 2003)
Daemon started 28−Apr−2003 14:03, 0 Jobs run.
Console connected at 28−Apr−2003 14:03
No jobs are running.
Level Type Scheduled Name
===
Incremental Backup 29−Apr−2003 01:05 Client1
Full Backup 29−Apr−2003 01:10 BackupCatalog
====

where the times and the Director's name will be different according to your setup. This shows
that an Incremental job is scheduled to run for the Job Client1 at 1:05am and that at 1:10, a
BackupCatalog is scheduled to run. Note, you should probably change the name Client1 to be
the name of your machine, if not, when you add additional clients, it will be very confusing. For
my real machine, I use Rufus rather than Client1 as in this example.

Now enter:

status client

and you should get something like:

The defined Client resources are:
 1: rufus−fd
Item 1 selected automatically.
Connecting to Client rufus−fd at rufus:8102

rufus−fd Version: 1.30 (28 April 2003)
Daemon started 28−Apr−2003 14:03, 0 Jobs run.
Director connected at: 28−Apr−2003 14:14
No jobs running.
====

In this case, the client is named rufus−fd your name will be different, but the line beginning with
rufus−fd Version ... is printed by your File daemon, so we are now sure it is up and running.

Finally do the same for your Storage daemon with:

status storage

Bacula Storage Management System

Running a Job 113

and you should get:

The defined Storage resources are:
 1: File
Item 1 selected automatically.
Connecting to Storage daemon File at rufus:8103

rufus−sd Version: 1.30 (28 April 2003)
Daemon started 28−Apr−2003 14:03, 0 Jobs run.
Device /tmp is not open.
No jobs running.
====

You will notice that the default Storage daemon device is named File and that it will use device
/tmp, which is not currently open.

Now, let's actually run a job with:

run

you should get the following output:

Using default Catalog name=MyCatalog DB=bacula
A job name must be specified.
The defined Job resources are:
 1: Client1
 2: BackupCatalog
 3: RestoreFiles
Select Job resource (1−3):

Here, Bacula has listed the three different Jobs that you can run, and you should choose number
1 and type enter, at which point you will get:

Run Backup job
JobName: Client1
FileSet: Full Set
Level: Incremental
Client: rufus−fd
Storage: File
Pool: Default
When: 2003−04−28 14:18:57
OK to run? (yes/mod/no):

At this point, take some time to look carefully at what is printed and understand it. It is asking
you if it is OK to run a job named Client1 with FileSet Full Set (we listed above) as an
Incremental job on your Client (your client name will be different), and to use Storage File and
Pool Default, and finally, it wants to run it now (the current time should be displayed by your
console).

Here we have the choice to run (yes), to modify one or more of the above parameters (mod), or
to not run the job (no). Please enter yes, at which point you should immediately get the command
prompt (an asterisk). If you wait a few seconds, then enter the command messages you will get
back something like:

28−Apr−2003 14:22 rufus−dir: Last FULL backup time not found. Doing
 FULL backup.

Bacula Storage Management System

Running a Job 114

28−Apr−2003 14:22 rufus−dir: Start Backup JobId 1,
 Job=Client1.2003−04−28_14.22.33
28−Apr−2003 14:22 rufus−sd: Job Client1.2003−04−28_14.22.33 waiting.
 Cannot find any appendable volumes.
Please use the "label" command to create a new Volume for:
 Storage: FileStorage
 Media type: File
 Pool: Default

The first message, indicates that no previous Full backup was done, so Bacula is upgrading our
Incremental job to a Full backup (this is normal). The second message indicates that the job
started with JobId 1., and the third message tells us that Bacula cannot find any Volumes in the
Pool for writing the output. This is normal because we have not yet created (labeled) any
Volumes. Bacula indicates to you all the details of the volume it needs.

At this point, the job is blocked waiting for a Volume. You can check this if you want by doing a
status dir. In order to continue, we label a Volume with:

label

and Bacula will print:

The defined Storage resources are:
 1: File
Item 1 selected automatically.
Enter new Volume name:

at which point, you should enter some name beginning with a letter and containing only letters
and numbers (period, hyphen, and underscore) are also permitted. For example, enter
TestVolume001, and you should get back:

Defined Pools:
 1: Default
Item 1 selected automatically.
Connecting to Storage daemon File at rufus:8103 ...
Sending label command for Volume "TestVolume001" Slot 0 ...
3000 OK label. Volume=TestVolume001 Device=/tmp
Catalog record for Volume "TestVolume002", Slot 0 successfully created.
Requesting mount FileStorage ...
3001 OK mount. Device=/tmp

Finally, enter messages and you should get something like:

28−Apr−2003 14:30 rufus−sd: Wrote label to prelabeled Volume
 "TestVolume001" on device /tmp
28−Apr−2003 14:30 rufus−dir: Bacula 1.30 (28Apr03): 28−Apr−2003 14:30
JobId: 1
Job: Client1.2003−04−28_14.22.33
FileSet: Full Set
Backup Level: Full
Client: rufus−fd
Start time: 28−Apr−2003 14:22
End time: 28−Apr−2003 14:30
Files Written: 1,444
Bytes Written: 38,988,877
Rate: 81.2 KB/s
Software Compression: None

Bacula Storage Management System

Running a Job 115

Volume names(s): TestVolume001
Volume Session Id: 1
Volume Session Time: 1051531381
Last Volume Bytes: 39,072,359
FD termination status: OK
SD termination status: OK
Termination: Backup OK

28−Apr−2003 14:30 rufus−dir: Begin pruning Jobs.
28−Apr−2003 14:30 rufus−dir: No Jobs found to prune.
28−Apr−2003 14:30 rufus−dir: Begin pruning Files.
28−Apr−2003 14:30 rufus−dir: No Files found to prune.
28−Apr−2003 14:30 rufus−dir: End auto prune.

If you don't see the output immediately, you can keep entering messages until the job terminates,
or you can enter, autodisplay on and your messages will automatically be displayed as soon as
they are ready.

If you do an ls −l of your /tmp directory, you will see that you have the following item:

−rw−r−−−−− 1 kern kern 39072153 Apr 28 14:30 TestVolume001

This is the file Volume that you just wrote and it contains all the data of the job just run. If you
run additional jobs, they will be appended to this Volume unless you specify otherwise.

If you would like to stop here, you can simply enter quit in the Console program, and you can
stop Bacula with ./bacula stop. To clean up, simply delete the file /tmp/TestVolume001, and
you should also re−initialize your database using:

./drop_bacula_tables

./make_bacula_tables

Please note that this will erase all information about the previous jobs that have run, and that you
might want to do it now while testing but that normally you will not want to re−initialize your
database.

If you would like to try restoring the files that you just backed up, read the following section.

Restoring Your Files

If you have run the default configuration and the save of the Bacula source code as demonstrated
above, you can restore the backed up files in the Console program by entering:

restore

where you will get:

First you select one or more JobIds that contain files
to be restored. You will be presented several methods
of specifying the JobIds. Then you will be allowed to
select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

Bacula Storage Management System

Restoring Your Files 116

 1: List last 20 Jobs run
 2: List Jobs where a given File is saved
 3: Enter list of JobIds to select
 4: Enter SQL list command
 5: Select the most recent backup for a client
 6: Cancel
Select item: (1−6):

As you can see, there are a number of options, but for the current demonstration, please enter 5 to
do a restore of the last backup you did, and you will get the following output:

Defined Clients:
 1: rufus−fd
Item 1 selected automatically.
The defined FileSet resources are:
 1: 1 Full Set 49Eann5no/ZR7+/uW95U6D
Item 1 selected automatically.
+−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
| JobId | Level | JobFiles | StartTime | VolumeName |
+−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
| 1 | F | 1444 | 2003−04−28 14:22:33 | TestVolume002 |
+−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
You have selected the following JobId: 1
Building directory tree for JobId 1 ...
1 items inserted into the tree and marked for extraction.
The defined Storage resources are:
 1: File
Item 1 selected automatically.

You are now entering file selection mode where you add and
remove files to be restored. All files are initially added.
Enter "done" to leave this mode.

cwd is: /
$

where I have truncated the listing on the right side to make it more readable. As you can see by
starting at the top of the listing, Bacula knows what client you have, and since there was only
one, it selected it automatically, likewise for the FileSet. Then Bacula produced a listing
containing all the jobs that form the current backup, in this case, there is only one, and the
Storage daemon was also automatically chosen. Bacula then took all the files that were in Job
number 1 and entered them into a directory tree (a sort of in memory representation of your
filesystem). At this point, you can use the cd and ls ro dir commands to walk up and down the
directory tree and view what files will be restored. For example, if I enter cd
/home/kern/bacula/bacula−1.30 and then enter dir I will get a listing of all the files in the
Bacula source directory. On your system, the path will be somewhat different. For more
information on this, please refer to the Restore Command Chapter of this manual for more
details.

To exit this mode, simply enter:

done

and you will get the following output:

Bootstrap records written to

Bacula Storage Management System

Restoring Your Files 117

 /home/kern/bacula/testbin/working/restore.bsr

The restore job will require the following Volumes:

 TestVolume001

1444 files selected to restore.

Run Restore job
JobName: RestoreFiles
Bootstrap: /home/kern/bacula/testbin/working/restore.bsr
Where: /tmp/bacula−restores
Replace: always
FileSet: Full Set
Client: rufus−fd
Storage: File
JobId: *None*
When: 2003−04−28 14:53:54
OK to run? (yes/mod/no):

If you answer yes your files will be restored to /tmp/bacula−restores. If you want to restore the
files to their original locations, you must use the mod option and explicitly set Where: to
nothing (or to /). We recommend you go ahead and answer yes and after a brief moment, enter
messages, at which point you should get a listing of all the files that were restored as well as a
summary of the job that looks similar to this:

28−Apr−2003 14:56 rufus−dir: Bacula 1.30 (28Apr03): 28−Apr−2003 14:56
JobId: 2
Job: RestoreFiles.2003−04−28_14.56.06
Client: rufus−fd
Start time: 28−Apr−2003 14:56
End time: 28−Apr−2003 14:56
Files Restored: 1,444
Bytes Restored: 38,816,381
Rate: 9704.1 KB/s
FD termination status: OK
Termination: Restore OK

28−Apr−2003 14:56 rufus−dir: Begin pruning Jobs.
28−Apr−2003 14:56 rufus−dir: No Jobs found to prune.
28−Apr−2003 14:56 rufus−dir: Begin pruning Files.
28−Apr−2003 14:56 rufus−dir: No Files found to prune.
28−Apr−2003 14:56 rufus−dir: End auto prune.

After exiting the Console program, you can examine the files in /tmp/bacula−restores, which
will contain a small directory tree with all the files. Be sure to clean up at the end with:

rm −rf /tmp/bacula−restore

Quitting the Console Program

Simply enter the command quit.

Bacula Storage Management System

Quitting the Console Program 118

Adding a Second Client

If you have gotten the example shown above to work on your system, you may be ready to add a
second Client (File daemon). That is you have a second machine that you would like backed up.
The only part you need installed on the other machine is the binary bacula−fd (or bacula−fd.exe
for Windows) and its configuration file bacula−fd.conf. You can start with the same
bacula−fd.conf file that you are currently using and make one minor modification to it to create
the conf file for your second client. Change the File daemon name from whatever was
configured, rufus−fd in the example above, but your system will have a different name. The best
is to change it to the name of your second machine. For example:

...
#
"Global" File daemon configuration specifications
#
FileDaemon { # this is me
 Name = rufus−fd
 FDport = 9102 # where we listen for the director
 WorkingDirectory = /home/kern/bacula/working
 Pid Directory = /var/run
}
...

would become:

...
#
"Global" File daemon configuration specifications
#
FileDaemon { # this is me
 Name = matou−fd
 FDport = 9102 # where we listen for the director
 WorkingDirectory = /home/kern/bacula/working
 Pid Directory = /var/run
}
...

where I show just a portion of the file and have changed rufus−fd to matou−fd. The names you
use are your choice. For the moment, I recommend you change nothing else. Later, you will want
to change the password.

Now you should install that change on your second machine. Then you need to make some
additions to your Director's configuration file to define the new File daemon or Client. Starting
from our original example which should be installed on your system, you should add the
following lines (essentially copies of the existing data but with the names changed) to your
Director's configuration file bacula−dir.conf.

#
Define the main nightly save backup job
By default, this job will back up to disk in /tmp
Job {
 Name = "Matou"
 Type = Backup
 Client = matou−fd
 FileSet = "Full Set"

Bacula Storage Management System

Adding a Second Client 119

 Schedule = "WeeklyCycle"
 Storage = File
 Messages = Standard
 Pool = Default
 Write Bootstrap = "/home/kern/bacula/working/matou.bsr"
}
Client {
 Name = matou−fd
 Address = matou
 FDPort = 9102
 Catalog = MyCatalog
 Password = "xxxxx" # password for
 File Retention = 30d # 30 days
 Job Retention = 180d # six months
 AutoPrune = yes # Prune expired Jobs/Files
}

That is all that is necessary. I copied the existing resource to create a second Job (Matou) to
backup the second client (matou−fd). It has the name Matou, the Client is named matou−fd, and
the bootstrap file name is changed, but everything else is the same. This means that Matou will
be backed up on the same schedule using the same set of tapes. You may want to change that
later, but for now, let's keep it simple.

The second change was to add a new Client resource that defines matou−fd and has the correct
address matou, but in real life, you may need a fully qualified machine address or an IP address.
I also kept the password the same (shown as xxxxx for the example).

At this point, if you stop Bacula and restart it, and start the Client on the other machine,
everything will be ready, and the prompts that you saw above will now include the second
machine.

To make this a real production installation, you will possibly want to use different Pool, or a
different schedule. It is up to you to customize. In any case, you should change the password in
both the Director's file and the Client's file for additional security.

When The Tape Fills

If you have scheduled your job, typically nightly, there will come a time when the tape fills up
and Bacula cannot continue. In this case, Bacula will send you a message similar to the
following:

rufus−sd: block.c:337 === Write error errno=28: ERR=No space left
 on device

This indicates that Bacula got a write error because the tape is full. Bacula will then search the
Pool specified for your Job looking for an appendable volume. In the best of all cases, you will
have properly set your Retention Periods and you will have all your tapes marked to be
Recycled, and Bacula will automatically recycle the tapes in your pool requesting and
overwriting old Volumes. For more information on recycling, please see the Recycling chapter of
this manual. If you find that your Volumes were not properly recycled (usually because of a
configuration error), please see the Manually Recycling Volumes section of the Recycling
chapter.

Bacula Storage Management System

When The Tape Fills 120

If like me, you have a very large set of Volumes and you label them with the date the Volume
was first writing, or you have not set up your Retention periods, Bacula will not find a tape in the
pool, and it will send you a message similar to the following:

rufus−sd: Job kernsave.2002−09−19.10:50:48 waiting. Cannot find any
 appendable volumes.
Please use the "label" command to create a new Volume for:
 Storage: SDT−10000
 Media type: DDS−4
 Pool: Default

Until you create a new Volume, this message will be repeated an hour later, then two hours later,
and so on doubling the interval each time up to a maximum interval of 1 day.

The obvious question at this point is: What do I do now?

The answer is simple: first, using the Console program, release the tape using the unmount
command. If you only have a single drive, it will be automatically selected, otherwise, make sure
you release the one specified on the message (in this case STD−10000).

Next, you remove the tape from the drive and insert a new blank tape. Note, on some older tape
drives, you may need to write an end of file mark (mt −f /dev/nst0 weof) to prevent the drive
from running away when Bacula attempts to read the label.

Finally, you use the label command in the Console to write a label to the new Volume. The label
command will contact the Storage daemon to write the software label, if it is successful, it will
add the new Volume to the Pool, then issue a mount command to the Storage daemon. See the
previous sections of this chapter for more details on labeling tapes.

The result is that Bacula will continue the previous Job writing the backup to the new Volume.

If like me, you have your Volume retention periods set correctly, but you have no more free
Volumes, you can relabel and reuse a Volume as follows:

Do a list volumes in the Console and select the oldest Volume for relabeling.•
If you have setup your Retention periods correctly, the Volume should have VolStatus
Purged.

•

If the VolStatus is not set to Purged, you will need to purge the database of Jobs that are
written on that Volume. Do so by using the command purge jobs volume in the
Console. If you have multiple Pools, you will be prompted for the Pool then enter the
VolumeName (or MediaId) when requested.

•

Then simply use the relabel command to relabel the Volume.•

To manually relabel the Volume use the following additional steps:

To delete the Volume from the catalog use the delete volume command in the Console
and select the VolumeName (or MediaId) to be deleted.

•

Use the unmount command in the Console to unmount the old tape.•
Physically relabel the old Volume that you deleted so that it can be reused.•
Insert the old Volume in the tape drive.•
From a command line do: mt −f /dev/st0 rewind and mt −f /dev/st0 weof, where you
need to use the proper tape drive name for your system in place of /dev/st0.

•

Bacula Storage Management System

When The Tape Fills 121

Use the label command in the Console to write a new Bacula label on your tape.•
Use the mount command in the Console if it is not automatically done, so that Bacula
starts using your newly labeled tape.

•

Other Useful Console Commands

status dir
Print a status of all running jobs and jobs scheduled in the next 24 hours.

status
The console program will prompt you to select a daemon type, then will request the
daemon's status.

status jobid=nn
Print a status of JobId nn if it is running. The Storage daemon is contacted and requested
to print a current status of the job as well.

list pools
List the pools defined in the Catalog (normally only Default is used).

list media
Lists all the media defined in the Catalog.

list jobs
Lists all jobs in the Catalog that have run.

list jobid=nn
Lists JobId nn from the Catalog.

list jobtotals
Lists totals for all jobs in the Catalog.

list files jobid=nn
List the files that were saved for JobId nn.

list jobmedia
List the media information for each Job run.

messages
Prints any messages that have been directed to the console.

unmount storage=storage−name
Unmounts the drive associated with the storage device with the name storage−name if
the drive is not currently being used. This command is used if you wish Bacula to free
the drive so that you can use it to label a tape.

mount storage=storage−name
Causes the drive associated with the storage device to be mounted again. When Bacula
reaches the end of a volume and requests you to mount a new volume, you must issue
this command after you have placed the new volume in the drive. In effect, it is the
signal needed by Bacula to know to start reading or writing the new volume.

quit
Exit or quit the console program.

Most of the commands given above, with the exception of list, will prompt you for the necessary
arguments if you simply enter the command name.

Debug Daemon Output

If you want debug output from the daemons as they are running, start the daemons from the
install directory as follows:

Bacula Storage Management System

Other Useful Console Commands 122

./bacula start −d20

To stop the three daemons, enter the following from the install directory:

./bacula stop

The execution of bacula stop may complain about pids not found. This is OK, especially if one
of the daemons has died, which is very rare.

To do a full system save, each File daemon must be running as root so that it will have
permission to access all the files. None of the other daemons require root privileges. However,
the Storage daemon must be able to open the tape drives. On many systems, only root can access
the tape drives. Either run the Storage daemon as root, or change the permissions on the tape
devices to permit non−root access. MySQL can be installed and run with any userid; root
privilege is not necessary.

Variable Expansion Index The Console Program

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 7

Running Bacula Index The Console Restore Command

Bacula Storage Management System

Other Useful Console Commands 123

http://www.bacula.org/

Bacula Console

General

The Bacula Console (sometimes called the User Agent) is a program that allows the user or the
System Administrator, to interact with the Bacula Director daemon while the daemon is running.

The current Bacula Console comes in two versions: a shell interface (TTY style), and a GNOME
GUI interface. Both permit the administrator or authorized users to interact with Bacula. You can
determine the status of a particular job, examine the contents of the Catalog as well as perform
certain tape manipulations with the Console program.

Since the Console program interacts with the Director by the network, your Console and Director
programs do not necessarily need to run on the same machine.

In fact, a certain minimal knowledge of the Console program is needed in order for Bacula to be
able to write on more than one tape, because when Bacula requests a new tape, it waits until the
user, via the Console program, indicates that the new tape is mounted.

Configuration

When the Console starts, it reads a standard Bacula configuration file named console.conf or
gnome−console.conf in the case of the GNOME Console version. This file allows default
configuration of the Console, and at the current time, the only Resource Record defined is the
Director resource, which gives the Console the name and address of the Director. For more
information on configuration of the Console program, please see the Console Configuration File
Chapter of this document.

Running the Console Program

After launching the Console program, it will prompt you for the next command with an asterisk
(*). (Note, in the GNOME version, the prompt is not present; you simply enter the commands
you want in the command text box at the bottom of the screen.) Generally, for all commands, you
can simply enter the command name and the Console program will prompt you for the necessary
arguments. Alternatively, in most cases, you may enter the command followed by arguments.
The general format is:

 <command> <keyword1>[=<argument1>] <keyword2>[=<argument2>] ...

where command is one of the commands listed below; keyword is one of the keywords listed
below (usually followed by an argument); and argument is the value.

For example:

list files jobid=23

will list all files saved for JobId 23. Or:

show pools

Bacula Console 124

will display all the Pool resource records.

Stopping the Console Program

Normally, you simply enter quit or exit and the Console program will terminate. However, it
waits until the Director acknowledges the command. If the Director is already doing a lengthy
command (e.g. prune), it may take some time. If you want to immediately terminate the Console
program, enter the .quit command.

There is currently no way to interrupt a Console command once issued (i.e. ctl−C does not
work). However, if you are at a prompt that is asking you to select one of several possibilities
and you would like to abort the command, you can enter a period (.), and in most cases, you will
either be returned to the main command prompt or if appropriate the previous prompt (in the case
of nested prompts). In a few places such as where it is asking for a Volume name, the period will
be taken to be the Volume name. In that case, you will most likely be able to cancel at the next
prompt.

Alphabetic List of Console Commands

The following commands are currently implemented:

add [pool=<pool−name> storage=<storage> jobid=<JobId>]
This command is used to add Volumes to an existing Pool. The Volume names entered
are placed in the Catalog and thus become available for backup operations. Normally,
the label command is used rather than this command because the label command labels
the physical media (tape) and does the equivalent of the add command. This command
affects only the Catalog and not the physical media. The physical media must exist and
be labeled before use (usually with the label command). This command can, however, be
useful if you wish to add a number of Volumes to the Pool that will be physically labeled
at a later time. It can also be useful if you are importing a tape from another site. Please
see the label command below for the list of legal characters in a Volume name.

autodisplay on/off
This command accepts on or off as an argument, and turns auto−display of messages on
or off respectively. The default for the console program is off, which means that you will
be notified when there are console messages pending, but they will not automatically be
displayed. The default for the gnome−console program is on, which means that messages
will be displayed when they are received (usually within 5 seconds of them being
generated).
When autodisplay is turned off, you must explicitly retrieve the messages with the
messages command. When autodisplay is turned on, the messages will be displayed on
the console as they are received.

automount on/off
This command accepts on or off as the argument, and turns auto−mounting of the tape
after a label command on or off respectively. The default is on. If automount is turned
off, you must explicitly mount the tape after a label command to use it.

cancel [jobid=<number> job=<job−name>]
This command is used to cancel a job and accepts jobid=nnn or job=xxx as an argument
where nnn is replaced by the JobId and xxx is replaced by the job name. If you do not
specify a keyword, the Console program will prompt you with the names of all the active

Bacula Storage Management System

Stopping the Console Program 125

jobs allowing you to choose one.
Once a Job is marked to be canceled, it may take a bit of time (generally within a
minute) before it actually terminates, depending on what operations it is doing.

create [pool=<pool−name>]
This command is used to create a Pool record in the database using the Pool resource
record defined in the Director's configuration file. So in a sense, this command simply
transfers the information from the Pool resource in the configuration file into the
Catalog. Normally this command is done automatically for you when the Director starts
providing the Pool is referenced within a Job resource. If you use this command on an
existing Pool, it will automatically update the Catalog to have the same information as
the Pool resource. After creating a Pool, you will most likely use the label command to
label one or more volumes and add their names to the Media database.
When starting a Job, if Bacula determines that there is no Pool record in the database,
but there is a Pool resource of the appropriate name, it will create it for you. If you want
the Pool record to appear in the database immediately, simply use this command to force
it to be created.

delete [volume=<vol−name> pool=<pool−name> job jobid=<id>]
The delete command is used to delete a Volume, Pool or Job record from the Catalog as
well as all associated Volume records that were created. This command is very
dangerous and we strongly recommend that you do not use it unless you know what you
are doing.
If the keyword Volume appears on the command line, the named Volume will be
deleted, if the keyword Pool appears on the command line, a Pool will be deleted, and if
the keyword Job appears on the command line, a Job and all its associated records (File
and JobMedia) will be deleted. The full form of this command is:

delete pool=<pool−name>

or

delete volume=<volume−name> pool=<pool−name> or

delete job JobId=<job−id>

The first form deletes a Pool record from the catalog database. The second form deletes a
Volume record from the specified pool in the catalog database. The third form delete the
specified Job record from the catalog database.

estimate
Using this command, you can get an idea how many files will be backed up, or if you are
unsure about your Include statements in your FileSet, you can test them without doing an
actual backup. A Job name must be specified and optionally a Client and FileSet. It then
contacts the client which computes the number of files and bytes that would be backed
up. Optionally you may specify the keyword listing in which case, all the files to be
backed up will be listed. Note, it could take quite some time to display them if the
backup is large. The full form is:
estimate job=<job−name> listing client=<client−name> fileset=<fileset−name>

Bacula Storage Management System

Stopping the Console Program 126

Specification of the job is sufficient, but you can also override the client and/or fileset
defined in the Job record by specifying them on the estimate command line.

As an example, you might do:

 @output /tmp/listing
 estimate job=NightlySave listing
 @output

which will do a full listing of all files to be backed up for the Job NightlySave and put it
in the file /tmp/listing.

help
This command displays the list of commands available.

label
This command is used to label physical volumes. The full form of this command is:
label storage=<storage−name> volume=<volume−name> slot=<slot>

If you leave out any part, you will be prompted for it. The media type is automatically
taken from the Storage resource definition that you supply. Once the necessary
information is obtained, the Console program contacts the specified Storage daemon and
requests that the tape be labeled. If the tape labeling is successful, the Console program
will create a Volume record in the appropriate Pool.

The Volume name is restricted to letters, numbers, and the special characters hyphen (−),
underscore (_), colon (:), and period (.). All other characters including a space are illegal.
This restriction is to ensure good readability of Volume names to reduce operator errors.

The label command can fail for a number of reasons:

The Volume name you specify is already in the Volume database.1.
The Storage daemon has a tape already mounted on the device, in which case
you must unmount the device, insert a blank tape, then do the label command.

2.

The tape in the device is already a Bacula labeled tape. (Bacula will never
relabel a Bacula labeled tape unless it is recycled and you use the relabel
command).

3.

There is no tape in the drive.4.
There are two ways to relabel a volume that already has a Bacula label. The brute force
method is to write an end of file mark on the tape using the system mt program,
something like the following:

 mt −f /dev/st0 rewind
 mt −f /dev/st0 weof

Then you use the label command to add a new label. However, this could leave traces of
the old volume in the catalog.

The preferable method to relabel a tape is to first purge the volume, either automatically,
or explicitly with the purge command, then use the relabel command described below.

list

Bacula Storage Management System

Stopping the Console Program 127

The list command lists the requested contents of the Catalog. The various fields of each
record are listed on a single line. If there The various forms of the list command are:
list jobs

list jobid=<id>

list job=<job−name>

list jobmedia

list jobmedia jobid=<id>

list jobmedia job=<job−name>

list files jobid=<id>

list files job=<job−name>

list pools

list clients

list jobtotals

list volumes

list volumes jobid=<id>

list volumes pool=<pool−name>

list volumes job=<job−name>

list volume=<volume−name> list nextvolume job=%lt;job−name%gt;

list nextvol job=%lt;job−name%gt;

What most of the above commands do should be more or less obvious. In general if you
do not specify all the command line arguments, the command will prompt you for what
is needed.

The list nextvol command will print the Volume name to be used by the specified job.
You should be aware that exactly what Volume will be used depends on a lot of factors
including the time and what a prior job will do. It may fill a tape that is not full when you
issue this command. As a consequence, this command will give you a good estimate of
what Volume will be used but not a definitive answer. In addition, this command may
have certain side effect because it runs through the same algorithm as a job, which means
it may automatically purge or recycle a Volume.

If you wish to add specialized commands that list the contents of the catalog, you can do
so by adding them to the query.sql file. However, this takes some knowledge of
programming SQL. Please see the query command below for additional information.

Bacula Storage Management System

Stopping the Console Program 128

See below for listing the full contents of a catalog record with the llist command.

As an example, the command list pools might produce the following output:

 +−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+
 | PoolId | Name | NumVols | MaxVols | PoolType | LabelFormat |
 +−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+
 | 1 | Default | 0 | 0 | Backup | * |
 | 2 | Recycle | 0 | 8 | Backup | File |
 +−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+

llist
The llist or "long list" command takes all the same arguments that the list command
described above does. The difference is that the llist command list the full contents of
each database record selected. It does so by listing the various fields of the record
vertically, with one field per line. It is possible to produce a very large number of output
lines with this command.
If instead of the list pools as in the example above, you enter llist pools you might get
the following output:

 PoolId: 1
 Name: Default
 NumVols: 0
 MaxVols: 0
 UseOnce: 0
 UseCatalog: 1
 AcceptAnyVolume: 1
 VolRetention: 1,296,000
 VolUseDuration: 86,400
 MaxVolJobs: 0
 MaxVolBytes: 0
 AutoPrune: 0
 Recycle: 1
 PoolType: Backup
 LabelFormat: *

 PoolId: 2
 Name: Recycle
 NumVols: 0
 MaxVols: 8
 UseOnce: 0
 UseCatalog: 1
 AcceptAnyVolume: 1
 VolRetention: 3,600
 VolUseDuration: 3,600
 MaxVolJobs: 1
 MaxVolBytes: 0
 AutoPrune: 0
 Recycle: 1
 PoolType: Backup
 LabelFormat: File

messages
This command causes any pending console messages to be immediately displayed.

mount

Bacula Storage Management System

Stopping the Console Program 129

The mount command is used to mount a volume on a physical device. This command is
used only if there is no Volume in a drive and Bacula requests a mount or when you
have specifically unmounted a Volume with the unmount console command. The
various forms of the mount command are:
mount storage=<storage−name>

mount [jobid=<id> | job=<job−name>]

If you have specified Automatic Mount = yes in the Storage daemon's Device resource,
under most circumstances, Bacula will automatically access the Volume unless you have
explicitly unmounted it in the Console program.

prune
The Prune command allows you to safely remove expired database records from Jobs
and Volumes. In all cases, the Prune command applies a retention period to the specified
records. You can Prune expired File entries from Job records; you can Prune expired Job
records from the database, and you can Prune both expired Job and File records from
specified Volumes.
prune files|jobs|volume client=<client−name> volume=<volume−name>

For a Volume to be pruned, the VolStatus must be Full, Used, or Append, otherwise the
pruning will not take place.

purge
The Purge command will delete associated records from Jobs and Volumes without
considering the retention period. This command is dangerous because you can delete
records associated with current backups of files, and we recommend that you do not use
it unless you know what you are doing.
purge files|jobs|volume jobid=<jobid> job=<job−name> client=<client−name>
volume=<volume−name>

For the purge command to work on Volumes, the VolStatus must be Append, Full,
Used, or Error.

relabel
This command is used to label physical volumes. The full form of this command is:
relabel storage=<storage−name> volume=<newvolume−name>
name=<old−volume−name>

If you leave out any part, you will be prompted for it. In order for the Volume
(old−volume−name) to be relabeled, it must be in the catalog, and the volume status
must be marked Purged. This happens automatically as a result of applying retention
periods, or you may explicitly purge the volume using the purge command.

Once the volume is relabeled, the old data is lost and cannot be recovered.

release
This command is used to cause the Storage daemon to rewind (release) the current tape
in the drive, and to re−read the Volume label the next time the tape is used.
release storage=<storage−name>

Bacula Storage Management System

Stopping the Console Program 130

After a release command, the device is still kept open by Bacula so it cannot be used by
another program. However, the operator can remove the current tape and to insert a
different one, and when the next Job starts, Bacula will know to re−read the tape label to
find out what tape is mounted. If you want to be able to use the drive with another
program (e.g. mt), you must use the unmount command to cause Bacula to completely
release (close) the device.

restore
The restore command allows you to select one or more Jobs (JobIds) to be restored using
various methods. Once the JobIds are selected, the File records for those Jobs are placed
in an internal Bacula directory tree, and the restore enters a file selection mode that
allows you to interactively walk up and down the file tree selecting individual files to be
restored. This mode is somewhat similar to the standard Unix restore program's
interactive file selection mode.
restore storage=<storage−name> client=<client−name> where=<path> current all

Where current, if specified, tells the restore command to automatically select a restore
to the most current backup. If not specified, you will be prompted. The all specification
tells the restore command to restore all files. If it is not specified, you will be prompted
for the files to restore. For details of the restore command, please see the Restore
Chapter of this manual.

run
This command allows you to schedule jobs to be run immediately. The full form of the
command is:
run job=<job−name> client=<client−name> fileset=<FileSet−name>
level=<level−keyword> storage=<storage−name> where=<directory−prefix>
when=<universal−time−specification> yes

Any information that is needed but not specified will be listed for selection, and before
starting the job, you will be prompted to accept, reject, or modify the parameters of the
job to be run, unless you have specified yes, in which case the job will be immediately
sent to the scheduler.

On my system, when I enter a run command, I get the following prompt:

A job name must be specified.
The defined Job resources are:
 1: Matou
 2: Polymatou
 3: Rufus
 4: Minimatou
 5: Minou
 6: PmatouVerify
 7: MatouVerify
 8: RufusVerify
 9: Watchdog
Select Job resource (1−9):

If I then select number 5, I am prompted with:

Run Backup job

Bacula Storage Management System

Stopping the Console Program 131

JobName: Minou
FileSet: Minou Full Set
Level: Incremental
Client: Minou
Storage: DLTDrive
Pool: Default
When: 2003−04−23 17:08:18
OK to run? (yes/mod/no):

If I now enter yes, the Job will be run. If I enter mod, I will be presented with the
following prompt.

Parameters to modify:
 1: Level
 2: Storage
 3: Job
 4: FileSet
 5: Client
 6: When
 7: Pool
Select parameter to modify (1−7):

If you wish to start a job at a later time, you can do so by setting the When time. Use the
mod option and select When (no. 6). Then enter the desired start time in
YYYY−MM−DD HH:MM:SS format.

setdebug
This command is used to set the debug level in each daemon. The form of this command
is:
setdebug level=nn [client=<client−name> | dir | director | storage=<storage−name> | all]

show
The show command will list the Director's resource records as defined in the Director's
configuration file (normally bacula−dir.conf). This command is used mainly for
debugging purposes by developers. The following keywords are accepted on the show
command line: directors, clients, counters, jobs, storages, catalogs, schedules, filesets,
groups, pools, messages, all, help. Please don't confuse this command with the list,
which displays the contents of the catalog.

sqlquery
The sqlquery command puts the Console program into SQL query mode where each line
you enter is concatenated to the previous line until a semicolon (;) is seen. The semicolon
terminates the command, which is then passed directly to the SQL database engine.
When the output from the SQL engine is displayed, the formation of a new SQL
command begins. To terminate SQL query mode and return to the Console command
prompt, you enter a period (.) in column 1.
Using this command, you can query the SQL catalog database directly. Note you should
really know what you are doing otherwise you could damage the catalog database. See
the query command below for simpler and safer way of entering SQL queries.

Depending on what database engine you are using (MySQL or SQLite), you will have
somewhat different SQL commands available. For more detailed information, please
refer to the MySQL or SQLite documentation.

Bacula Storage Management System

Stopping the Console Program 132

status
This command will display the status of the next jobs that are scheduled during the next
twenty−four hours as well as the status of currently running jobs. The full form of this
command is:
status [all | dir=<dir−name> | director | client=<client−name> |
storage=<storage−name>]

If you do a status dir, the console will list any currently running jobs as well as a
summary of all jobs scheduled to be run in the next 24 hours. The summary will include
the Volume name to be used. You should be aware of two things: 1. to obtain the volume
name, the code goes through the same code that will be used when the job runs, which
means that it may prune or recycle a Volume; 2. The Volume listed is only a best guess.
The Volume actually used may be different because of the time difference (more
durations may expire when the job runs) and another job could completely fill the
Volume requiring a new one.

unmount
This command causes the indicated Bacula Storage daemon to unmount the specified
device. The forms of the command are the same as the mount command:
unmount storage=<storage−name>

unmount [jobid=<id> | job=<job−name>]

update
This command will update catalog for either a specific Pool record, a Volume record, or
the Slots in an autochanger with barcode capability. In the case of updating a Pool
record, the new information will be automatically taken from the corresponding
Director's configuration resource record. It can be used to increase the maximum number
of volumes permitted or to set a maximum number of volumes. The following main
keywords may be specified:
media, volume, pool, slots

In the case of updating a Volume, you will be prompted for which value you wish to
change. The following Volume parameters may be changed:

 Volume Status
 Volume Retention Period
 Volume Use Duration
 Maximum Volume Jobs
 Maximum Volume Bytes
 Recycle Flag
 Slot
 Pool
 Volume Files

For slots update slots, Bacula will obtain a list of slots and their barcodes from the
Storage daemon, and for each barcode found, it will automatically update the slot in the
catalog Media record to correspond to the new value. This is very useful if you have
moved cassettes in the magazine, or if you have removed the magazine and inserted a
different one.

For Pool update pool, Bacula will tranfer the Volume record to the pool specified.

Bacula Storage Management System

Stopping the Console Program 133

The full form of the update command with all command line arguments is:

 update volume=xxx pool=yyy slots volstatus=xxx VolRetention=ddd
 VolUse=ddd MaxVolJobs=nnn MaxVolBytes=nnn Recycle=yes/no
 slot=nnn

use
This command allows you to specify which Catalog database to use. Normally, you will
be using only one database so this will be done automatically. In the case that you are
using more than one database, you can use this command to switch from one to another.
use <database−name>

var
This command takes a string or quoted string and does variable expansion on it the same
way variable expansion is done on the LabelFormat string. Thus, for the most part, you
can test your LabelFormat strings. The difference between the var command and the
actual LabelFormat process is that during the var command, no job is running so
"dummy" values are used in place of Job specific variables. Generally, however, you will
get a good idea of what is going to happen in the real case.

version
The command prints the Director's version.

quit
This command terminates the console program. The console program sends the quit
request to the Director and waits for acknowledgment. If the Director is busy doing a
previous command for you that has not terminated, it may take some time. You may quit
immediately by issuing the .quit command (i.e. quit preceded by a period).

query
This command reads a predefined SQL query from the query file (the name and location
of the query file is defined with the QueryFile resource record in the Director's
configuration file). You are prompted to select a query from the file, and possibly enter
one or more parameters, then the command is submitted to the Catalog database SQL
engine.
The following queries are currently available (version 1.24):

Available queries:
 1: List Job totals:
 2: List where a file is saved:
 3: List where the most recent copies of a file are saved:
 4: List total files/bytes by Job:
 5: List total files/bytes by Volume:
 6: List last 20 Full Backups for a Client:
 7: List Volumes used by selected JobId:
 8: List Volumes to Restore All Files:
 9: List where a File is saved:
Choose a query (1−9):

exit
This command terminates the console program.

wait
The wait command causes the Director to pause until there are no jobs running. This
command is useful in a batch situation such as regression testing where you wish to start
a job and wait until that job completes before continuing.

Bacula Storage Management System

Stopping the Console Program 134

Special dot Commands

There is a list of commands that are prefixed with a period (.). These commands are intended to
be used either by batch programs or graphical user interface front−ends. They are not normally
used by interactive users. Once GUI development begins, this list will be considerably expanded.
The following is the list of dot commands:

.die cause the Director to segment fault (for debugging)

.jobs list all job names

.filesets list all fileset names

.clients list all client names

.msgs return any queued messages

.quit quit

.exit quit

Special At (@) Commands

Normally, all commands entered to the Console program are immediately forwarded to the
Director, which may be on another machine, to be executed. However, there is a small list of at
commands, all beginning with a at character (@), that will not be sent to the Director, but rather
interpreted by the Console program directly. Note, these commands are implemented only in the
tty console program and not in the GNOME Console. These commands are:

@input <filename>
Read and execute the commands contained in the file specified.

@output <filename> w/a
Send all following output to the filename specified either overwriting the file (w) or
appending to the file (a). To redirect the output to the terminal, simply enter @output
without a filename specification. WARNING: be careful not to overwrite a valid file. A
typical example during a regression test might be:
 @output /dev/null
 commands ...
 @output

@tee <filename> w/a
Send all subsequent output to both the specified file and the terminal. It is turned off by
specifying @tee or @output without a filename.

@sleep <seconds>
Sleep the specified number of seconds.

@time
Print the current time and date.

@version
Print the Console's version.

@quit
quit

@exit
quit

@# anything
Comment

Bacula Storage Management System

Special dot Commands 135

Running the Console Program from a Shell Script

You can automate many Console tasks by running the console program from a shell
script. For example, if you have created a file containing the following commands:

./console −c ./console.conf <<END_OF_DATA
unmount storage=DDS−4
quit
END_OF_DATA

when that file is executed, it will unmount the current DDS−4 storage device. You might
want to run this command during a Job by using the RunBeforeJob or RunAfterJob
records.

It is also possible to run the Console program from file input where the file contains the
commands as follows:

./console −c ./console.conf <filename

where the file named filename contains any set of console commands.

As a real example, the following script is part of the Bacula regression tests. It labels a
volume (a disk volume), runs a backup, then does a restore of the files saved.

bin/console −c bin/console.conf <<END_OF_DATA
@output /dev/null
messages
@output /tmp/log1.out
label volume=TestVolume001
run job=Client1 yes
wait
messages
@#
@# now do a restore
@#
@output /tmp/log2.out
restore current all
yes
wait
messages
@output
quit
END_OF_DATA

The output from the backup is directed to /tmp/log1.out and the output from the restore is
directed to /tmp/log2.out. To ensure that the backup and restore ran correctly, the output
files are checked with:

grep "^Termination: *Backup OK" /tmp/log1.out
backupstat=$?
grep "^Termination: *Restore OK" /tmp/log2.out
restorestat=$?

Bacula Storage Management System

Running the Console Program from a Shell Script 136

Adding Volumes to a Pool

If you have used the label command to label a Volume, it will be automatically added to
the Pool, and you will not need to add any media to the pool.

Alternatively, you may choose to add a number of Volumes to the pool without labeling
them. At a later time when the Volume is requested by Bacula you will need to label it.

Before adding a volume, you must know the following information:

The name of the Pool (normally "Default")1.
The Media Type as specified in the Storage Resource in the Director's
configuration file (e.g. "DLT8000")

2.

The number and names of the Volumes you wish to create.3.
For example, to add media to a Pool, you would issue the following commands to the
console program:

*add
Enter name of Pool to add Volumes to: Default
Enter the Media Type: DLT8000
Enter number of Media volumes to create. Max=1000: 10
Enter base volume name: Save
Enter the starting number: 1
10 Volumes created in pool Default
*

To see what you have added, enter:

*list media pool=Default
+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−+
| MediaId | VolumeName | MediaType | VolStatus | VolBytes | LastWritten |
+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−+
11	Save0001	DLT8000	Append	0	0000−00−00 00:00:00
12	Save0002	DLT8000	Append	0	0000−00−00 00:00:00
13	Save0003	DLT8000	Append	0	0000−00−00 00:00:00
14	Save0004	DLT8000	Append	0	0000−00−00 00:00:00
15	Save0005	DLT8000	Append	0	0000−00−00 00:00:00
16	Save0006	DLT8000	Append	0	0000−00−00 00:00:00
17	Save0007	DLT8000	Append	0	0000−00−00 00:00:00
18	Save0008	DLT8000	Append	0	0000−00−00 00:00:00
19	Save0009	DLT8000	Append	0	0000−00−00 00:00:00
20	Save0010	DLT8000	Append	0	0000−00−00 00:00:00
+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−+
*

Notice that the console program automatically appended a number to the base Volume
name that you specify (Save in this case). If you don't want it to append a number, you
can simply answer 0 (zero) to the question "Enter number of Media volumes to create.
Max=1000:", and in this case, it will create a single Volume with the exact name you
specify.

Bacula Storage Management System

Adding Volumes to a Pool 137

Running Bacula Index The Console Restore Command

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 8

The Console Program Index Disaster Recovery Using Bacula

Bacula Storage Management System

Adding Volumes to a Pool 138

http://www.bacula.org/

The Bacula Console Restore Command

General

Below, we will discuss restoring files with the Console Restore command, which is the
recommended way of doing it. However, there is a standalone program named bextract, which
also permits restoring files. For more information on this program, please see the Bacula Utility
Programs chapter of this manual. There is also a program named bscan, documented in the same
Bacula Utility Programs chapter, that permits restoring a catalog database from tapes.

In general, to restore a file or a set of files, you must run a restore job. That is a job with Type =
Restore. As a consequence, you should have a predefined restore job in your bacula−dir.conf
(Director's config) file. The exact parameters (Client, FileSet, ...) that you define are not
important as you can either modify them manually before running the job or if you use the
restore command, explained below, they will be automatically set for you.

Since Bacula is a network backup program, you must be aware that when you restore files, it is
up to you to ensure that you or Bacula have selected the correct Client and the correct hard disk
location for restoring those files. Bacula will quite willingly backup client A, and restore it by
sending the files to a different directory on client B. Normally, you will want to avoid this, but
assuming the operating systems are not too different in their file structures, this should work
perfectly well, if so desired.

The Restore Command

The restore command in the Console program allows you to first select one or more Jobs (JobIds)
to be restored using various methods or to enter the filenames to be restored either manually or to
have Bacula read the filenames from a file. These methods are explained in detail below. Once
the JobIds are selected, the File records for those Jobs are placed in an internal Bacula directory
tree, and the restore enters a file selection mode that allows you to interactively walk up and
down the file tree selecting individual files to be restored. This mode is somewhat similar to the
standard Unix restore program's interactive file selection mode.

Within the Console program, after entering the restore command, you are presented with the
following selection prompt:

First you select one or more JobIds that contain files
to be restored. You will be presented several methods
of specifying the JobIds. Then you will be allowed to
select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:
 1: List last 20 Jobs run
 2: List Jobs where a given File is saved
 3: Enter list of JobIds to select
 4: Enter SQL list command
 5: Select the most recent backup for a client
 6: Select backup for a client before a specified time
 7: Enter a list of files to restore
 8: Enter a list of files to restore before a specified time
 9: Cancel
Select item: (1−9):

The Bacula Console Restore Command 139

Item 1 will list the last 20 jobs run. If you find the Job you want, you can then select item
3 and enter its JobId(s).

•

Item 2 will list all the Jobs where a specified file is saved. If you find the Job you want,
you can then select item 3 and enter the JobId.

•

Item 3 allows you the enter a list of comma separated JobIds whose files will be put into
the directory tree.

•

Item 4 allows you to enter any arbitrary SQL command. This is probably the most
primitive way of finding the desired JobIds, but at the same time, the most flexible. Once
you have found the JobId(s), you can select item 3 and enter them.

•

Item 5 will automatically select the most recent Full backup and all subsequent
incremental and differential backups for a specified Client. These are the Jobs and Files
which if reloaded will restore your system to the most current saved state. It
automatically enters the JobIds found into the directory tree. This is probably the most
convenient of all the above options to use if you wish to restore a selected Client to its
most recent state.

•

Item 6 allows you to specify a date and time then Bacula will automatically select the
most recent Full backup and all subsequent incremental and differential backups that
started before the specified date and time.

•

Item 7 allows you to specify one or more filenames (complete path required) to be
restored. Each filename is entered one at a time or if you prefix a filename with the
less−than symbol (<) Bacula will read that file and assume it is a list of filenames to be
restored. The filename entry mode is terminated by entering a blank line.

•

Item 8 allows you to specify a data and time before entering the filenames. See Item 7
above for more details.

•

Item 9 allows you to cancel the restore command.•

As an example, suppose that we select item 5 (restore to most recent state). It will then ask for
the desired Client, which on my system, will print the all the Clients found in the database as
follows:

Defined clients:
 1: Rufus
 2: Matou
 3: Polymatou
 4: Minimatou
 5: Minou
 6: MatouVerify
 7: PmatouVerify
 8: RufusVerify
 9: Watchdog
Select Client (File daemon) resource (1−9):

If you have only one Client, it will be automatically selected, but in this case, I enter Rufus to
select the Client. Then Bacula needs to know what FileSet is to be restored, so it prompts with:

The defined FileSet resources are:
 1: Full Set 2003−05−30 11:49:47
 2: Kerns Files 2003−06−27 21:30:51
Select FileSet resource (1−2):

Bacula Storage Management System

The Bacula Console Restore Command 140

I choose item 1, which is my full backup. Note, the information that follows your FileSet names
is the date and time at which the FileSet was created. Each time you edit the FileSet definition, a
new FileSet will be created (with the same name but a different date and MD5 so that Bacula can
distinguish it). As a consequence, it is possible to have two "Full Set" entries above, but each one
will have a different date. The date is shown to make the output a bit more user friendly. If
having several FileSets with the same name is confusing, you might simply rename your FileSet
each time you change it.

At this point, Bacula has all the information it needs to find the most recent set of backups. It
will then query the database, which may take a bit of time, and it will come up with something
like the following. Note, some of the columns are truncated here for presentation:

+−−−−−−−+−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+

| JobId | Levl | JobFiles | StartTime | VolumeName | StrtFil | VolSesId | VolSesTime |

+−−−−−−−+−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+

| 1,792 | F | 128,374 | 2002−08−03 01:58 | DLT−19Jul02 | 67 | 18 | 1028042998 |

| 1,792 | F | 128,374 | 2002−08−03 01:58 | DLT−04Aug02 | 0 | 18 | 1028042998 |

| 1,797 | I | 254 | 2002−08−04 13:53 | DLT−04Aug02 | 5 | 23 | 1028042998 |

| 1,798 | I | 15 | 2002−08−05 01:05 | DLT−04Aug02 | 6 | 24 | 1028042998 |

+−−−−−−−+−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+

You have selected the following JobId: 1792,1792,1797
Building directory tree for JobId 1792 ...
Building directory tree for JobId 1797 ...
Building directory tree for JobId 1798 ...

cwd is: /
$

Depending on the number of JobFiles for each JobId, the Building directory tree ..." can take a
bit of time.

In our example, Bacula found four Jobs that comprise the most recent backup of the specified
Client and FileSet. Two of the Jobs have the same JobId because that Job wrote on two different
Volumes. Note, in Bacula 1.32c and above, no duplicate JobIds will be printed to reduce
confusion. The third Job was an incremental backup to the previous Full backup, and it only
saved 254 Files compared to 128,374 for the Full backup. The fourth Job was also an incremental
backup that saved 15 files.

Next Bacula entered those Jobs into the directory tree, and as a default marks all files to be
restored, tells you how many files are in the tree then tells you that the current working directory
(cwd) is /. Finally, Bacula prompts with the dollar sign ($) to indicate that you may enter
commands to move around the directory tree and to select files.

Instead of choosing item 5 on the first menu (Select the most recent backup for a client), if we
had chosen item 3 (Enter list of JobIds to select) and we had entered the JobIds 1792,1797,1798
we would have arrived at the same point.

One point to note if you are manually entering JobIds is that you must enter them in the order
they were run (generally in increasing JobId order). If you enter them out of order and the same
file was saved in two or more of the Jobs, you may end up with an old version of that file (i.e. not
the most recent).

Bacula Storage Management System

The Bacula Console Restore Command 141

While in file selection mode, you can enter help or a question mark (?) to produce a summary of
the available commands:

 Command Description
 ======= ===========
 mark mark file for restoration
 unmark unmark file for restoration
 cd change current directory
 pwd print current working directory
 ls list current directory
 dir list current directory
 count count marked files
 find find files
 done leave file selection mode
 exit exit = done
 help print help
 ? print help

As a default Bacula has selected all the files in the directory tree. If you want to do a full restore,
simply enter done, and Bacula will write the bootstrap records to a file and request your
approval to start a restore job.

If instead, you wish to start with an empty slate (i.e. no jobs marked for restoration), simply enter
unmark *. Otherwise, you can simply start looking at the tree and unmark particular files or
directories if you do not want them restored. It is easy to make a mistake in specifying a file to
mark or unmark, and Bacula's error handling is not perfect, so please check your work by using
the ls or dir commands to see what files are actually selected. Any selected file has its name
preceded by an asterisk.

To check what is marked or not marked, enter the count command, which displays:

128401 total files. 128401 marked for restoration.

Each of the above commands will be described in more detail in the next section. We continue
with the above example, having accepted to restore all files as Bacula set by default. On entering
the done command, Bacula prints:

Bootstrap records written to /home/kern/bacula/working/restore.bsr

The restore job will require the following Volumes:

 DLT−19Jul02
 DLT−04Aug02

128401 files selected to restore.

Run Restore job
JobName: kernsrestore
Bootstrap: /home/kern/bacula/working/restore.bsr
Where: /tmp/bacula−restores
Replace: always
FileSet: Kerns Files
Client: Rufus
Storage: SDT−10000
JobId: *None*

Bacula Storage Management System

The Bacula Console Restore Command 142

OK to run? (yes/mod/no):

Please examine each of the items very carefully to make sure that they are correct. In particular,
look at Where, which tells you where in the directory structure the files will be restored, and
Client, which tells you which client will receive the files. These items will not always be
completed with the correct values depending on which of the restore options you chose.

The above assumes that you have defined a Restore Job resource in your Director's configuration
file. Normally, you will only need one Restore Job resource definition because by its nature,
restoring is a manual operation, and using the Console interface, you will be able to modify the
Restore Job to do what you want.

An example Restore Job resource definition is given below.

Returning to the above example, you should verify that the Client name is correct before running
the Job. However, you may want to modify some of the parameters of the restore job. For
example, in addition to checking the Client it is wise to check that the Storage device chosen by
Bacula is indeed correct. Although the FileSet is shown, it will be ignored in restore. The restore
will choose the files to be restored either by reading the Bootstrap file, or if not is specified, it
will restore all files associated with the specified backup JobId (i.e. the JobId of the Job that
originally backed up the files).

Finally before running the job, please note that the default location for restoring files is not their
original locations, rather the directory /tmp/bacula−restores. You can change this default by
modifying your bacula−dir.conf file, or you can modify it using the mod option. If you want to
restore the files to their original location, you must have Where set to nothing or to the root, i.e.
/.

If you now enter yes, Bacula will run the restore Job. The Storage daemon will first request
Volume DLT−19Jul02 and after the appropriate files have been restored from that volume, it
will request Volume DLT−04Aug02.

Selecting Files by Filename

If you have a small number of files to restore, and you know the filenames, you can either put the
list of filenames in a file to be read by Bacula, or you can enter the names one at a time. The
filenames must include the full path and filename. No wild cards are used.

To enter the files, after the restore, you select item number 7 from the prompt list:

To select the JobIds, you have the following choices:
 1: List last 20 Jobs run
 2: List Jobs where a given File is saved
 3: Enter list of JobIds to select
 4: Enter SQL list command
 5: Select the most recent backup for a client
 6: Select backup for a client before a specified time
 7: Enter a list of files to restore
 8: Enter a list of files to restore before a specified time
 9: Cancel
Select item: (1−9): 7

Bacula Storage Management System

Selecting Files by Filename 143

which then prompts you with for the client name:

Defined Clients:
 1: Timmy
 2: Tibs
 3: Rufus
Select the Client (1−3): 3

Of course, your client list will be different, and if you have only one client, it will be
automatically selected. And finally, Bacula requests you to enter a filename:

Enter filename:

At this point, you can enter the full path and filename

Enter filename: /home/kern/bacula/k/Makefile.in
Enter filename:

as you can see, it took the filename. If Bacula cannot find a copy of the file, it prints the
following:

Enter filename: junk filename
No database record found for: junk filename
Enter filename:

If you want Bacula to read the filenames from a file, you simply precede the filename with a
less−than symbol (<). When you have entered all the filenames, you enter a blank line, and
Bacula will write the bootstrap file, tell you what tapes will be used, and propose a Restore job to
be run:

Enter filename:
Automatically selected Storage: DDS−4
Bootstrap records written to /home/kern/bacula/working/restore.bsr

The restore job will require the following Volumes:

 test1

1 file selected to restore.

Run Restore job
JobName: kernsrestore
Bootstrap: /home/kern/bacula/working/restore.bsr
Where: /tmp/bacula−restores
Replace: always
FileSet: Kerns Files
Client: Rufus
Storage: DDS−4
When: 2003−09−11 10:20:53
Priority: 10
OK to run? (yes/mod/no):

It is possible to automate the selection by file by putting your list of files in say /tmp/file−list,
then using the following command:

Bacula Storage Management System

Selecting Files by Filename 144

restore client=Rufus file=

Command Line Arguments

If all the above sounds complicated, you will probably agree that it really isn't after trying it a
few times. It is possible to do everything that was shown above, with the exception of selecting
the FileSet, by using command line arguments with a single command by entering:

restore client=Rufus current all yes

The client=Rufus specification will automatically select Rufus as the client, the current tells
Bacula that you want to restore the system to the most current state possible, and the yes
suppresses the final yes/mod/no prompt and simply runs the restore.

The full list of possible command line arguments are:

all −− select all Files to be restored without prompting> In the absence of this keyword,
Bacula will prompt you to mark and unmark files in the directory tree.

•

current −− automatically select the most current set of backups for the specified client.•
client=xxxx −− select the specified client.•
jobid=nnn −− specify a JobId or comma separated list of JobIds to be restored.•
before=YYYY−MM−DD HH:MM:SS −− specify a date and time to which the system
should be restored. Only Jobs started before the specified date/time will be selected, and
as is the case for current Bacula will automatically find the most recent prior Full save
and all Differential and Incremental saves run before the date you specify. Note, this
command is not too user friendly in that you must specify the date/time exactly as
shown.

•

yes −− automatically run the restore without prompting for modifications (most useful in
batch scripts).

•

Restoring on Windows

If you are restoring on WinNT/2K/XP systems, Bacula will restore the files with the original
ownerships and permissions as would be expected. This is also true if you are restoring those
files to an alternate directory (using the Where option in restore). However, if the alternate
directory does not already exist, the Bacula File daemon (Client) will create it, and since the File
daemon runs under the SYSTEM account, the directory will be created with SYSTEM ownership
and permissions. In this case, you may have problems accessing the newly restored files.

To avoid this problem, you can create the alternate directory before doing the restore. Bacula will
not change the ownership and permissions of the directory if it is already created as long as it is
not one of the directories being restored (i.e. written to tape).

Restoring Files Can Be Slow

Restoring files is generally much slower than backing it up for several reasons. The first is that
during a backup the tape is normally already positioned and Bacula need only write. On the other

Bacula Storage Management System

Command Line Arguments 145

hand, because restoring files is done so rarely, Bacula keeps only the he start file and block on
the tape for the whole job rather than on a file by file basis which would use quite a lot of space
in the catalog.

Bacula versions 1.31a and older would seek to the first file on the first tape, then sequentially
search the tape for the specified files. If you were doing a full restore, this is OK, but if you want
to restore one or two files, the process could be quite long.

This deficiency has been corrected in version 1.32. The consequence is that Bacula will forward
space to the correct file mark on the tape for the Job, then forward space to the correct block, and
finally sequentially read each record until it gets to the correct one(s) for the file or files you want
to restore. Once the desired files are restored, Bacula will stop reading the tape. For restoring a
small number of files, version 1.32 and greater are hundreds of times faster than previous
versions.

Finally, instead of just reading a file for backup, during the restore, Bacula must create the file,
and the operating system must allocate disk space for the file as Bacula is restoring it.

For all the above reasons the restoration process is generally much slower than backing up.

Example Restore Job Resource

Job {
 Name = "RestoreFiles"
 Type = Restore
 Client = Any−client
 FileSet = "Any−FileSet"
 Storage = Any−storage
 Where = /tmp/bacula−restores
 Messages = Standard
 Pool = Default
}

If Where is not specified, the default location for restoring files will be their original locations.

File Selection Commands

After you have selected the Jobs to be restored and Bacula has created the in−memory directory
tree, you will enter file selection mode as indicated by the dollar sign ($) prompt. While in this
mode, you may use the commands listed above. The basic idea is to move up and down the in
memory directory structure with the cd command much as you normally do on the system. Once
you are in a directory, you may select the files that you want restored. As a default all files are
marked for restoration. If you wish to start with no files, simply enter: unmark *. Then proceed
to select the files you wish to restore by marking them with the mark command. The available
commands are:

cd
The cd command changes the current directory to the argument specified. It operates
much like the Unix cd command. Wildcard specifications are not permitted.

dir
The dir command is similar to the ls command, except that it prints it in long format (all

Bacula Storage Management System

Example Restore Job Resource 146

details). This command can be a bit slower than the ls command because it must access
the catalog database for the detailed information for each file.

find
The find command accepts one or more arguments and displays all files in the tree that
match that argument. The argument may have wildcards. It is somewhat similar to the
Unix command find / −name arg.

ls
The ls command produces a listing of all the files contained in the current directory
much like the Unix ls command. You may specify an argument containing wildcards, in
which case only those files will be listed. Any file that is marked for restoration will
have its name preceded by an asterisk (*). Directory names will be terminated with a
forward slash (/) to distinguish them from filenames.

mark
The mark command allows you to mark files for restoration. It takes a single argument
which is the filename or directory name in the current directory to be marked for
extraction. The argument may be a wildcard specification, in which case all files that
match in the current directory are marked for restoration. If the argument matches a
directory rather than a file, then the directory and all files contained in that directory
(recursively) are marked for restoration. Any marked file will have its name preceded
with an asterisk (*) in the output produced by the ls or dir commands. Note, supplying a
full path on the mark command does not work as it expects to select a file or directory in
the current directory.

unmark
The unmark is identical to the mark command, except that it unmarks the specified file
or files so that they will not be restored.

pwd
The pwd command prints the current working directory. It accepts no arguments.

count
The count command prints the total files in the directory tree and the number of files
marked to be restored.

done
This command terminates file selection mode.

exit
This command terminates file selection mode (the same as done).

help
This command prints a summary of the commands available.

?
This command is the same as the help command.

The Console Program Index Disaster Recovery Using Bacula

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula Storage Management System

Example Restore Job Resource 147

http://www.bacula.org/

Bacula 1.32 User's Guide Chapter 11

Disaster Recovery Using Bacula Index Automatic Volume Recycling

Bacula Storage Management System

Example Restore Job Resource 148

Catalog Maintenance
Without proper setup and maintenance, your Catalog may continue to grow indefinitely as you
run Jobs and backup Files. How fast the size of your Catalog grows depends on the number of
Jobs you run and how many files they backup. By deleting records within the database, you can
make space available for the new records that will be added during the next Job. By constantly
deleting old expired records (dates older than the Retention period), your database size will
remain constant.

If you started with the default configuration files, they already contain reasonable defaults for a
small number of machines (less that 5), so if you fall into that case, catalog maintenance will not
be urgent if you have a few hundred megabytes of disk space free. Whatever the case may be,
some knowledge of retention periods will be useful.

Setting Retention Periods

Bacula uses three Retention periods: the File Retention period, the Job Retention period, and
the Volume Retention period. Of these three, the File Retention period is by far the most
important in determining how large your database will become.

The File Retention and the Job Retention are specified in each Client resource as is shown
below. The Volume Retention period is specified in the Pool resource, and the details are given
in the next chapter of this manual.

File Retention = <time−period−specification>
The File Retention record defines the length of time that Bacula will keep File records in
the Catalog database. When this time period expires, and if AutoPrune is set to yes,
Bacula will prune (remove) File records that are older than the specified File Retention
period. The pruning will occur at the end of a backup Job for the given Client. Note that
the Client database record contains a copy of the File and Job retention periods, but
Bacula uses the current values found in the Director's Client resource to do the pruning.
Retention periods are specified in seconds, but as a convenience, there are a number of
modifiers that permit easy specification in terms of minutes, hours, days, weeks, months,
quarters, or years on the record. See the Configuration chapter of this manual for
additional details of modifier specification.

The default is 60 days.

Job Retention = <time−period−specification>
The Job Retention record defines the length of time that Bacula will keep Job records in
the Catalog database. When this time period expires, and if AutoPrune is set to yes
Bacula will prune (remove) Job records that are older than the specified File Retention
period. Note, if a Job record is selected for pruning, all associated File and JobMedia
records will also be pruned regardless of the File Retention period set. As a consequence,
you normally will set the File retention period to be less than the Job retention period.
The retention period is specified in seconds, but as a convenience, there are a number of
modifiers that permit easy specification in terms of minutes, hours, days, weeks, months,
quarters, or years. See the Configuration chapter of this manual for additional details of
modifier specification.

Catalog Maintenance 149

The default is 180 days.

AutoPrune = <yes/no>
If AutoPrune is set to yes (default), Bacula will automatically apply the File retention
period and the Job retention period for the Client at the end of the Job.
If you turn this off by setting it to no, your Catalog will grow each time you run a Job.

Compacting Your MySQL Database

Over time, as noted above, your database will tend to grow. I've noticed that even though Bacula
regularly prunes files, MySQL does not effectively use the space, and instead continues growing.
To avoid this, from time to time, you must compact your database. Normally, large commercial
database such as Oracle have commands that will compact a database to reclaim wasted file
space. MySQL has the OPTIMIZE TABLE command that you can use, and SQLite version
2.8.4 and greater has the VACUUM command. We leave it to you to explore the utility of the
OPTIMIZE TABLE command in MySQL.

All database programs have some means of writing the database out in ASCII format and then
reloading it. Doing so will re−create the database from scratch producing a compacted result, so
below, we show you how you can do this for both MySQL and SQLite.

For a MySQL database, you could write the Bacula database as an ASCII file (bacula.sql) then
reload it by doing the following:

mysqldump −f −−opt bacula > bacula.sql
mysql bacula < bacula.sql
rm −f bacula.sql

There is no need to explicitly delete the old database as MySQL will automatically do so in
recreating the database. Depending on the size of your database, this will take more or less time
and a fair amount of disk space. For example, if I cd to the location of the MySQL Bacula
database (typically /opt/mysql/var or something similar) and enter:

du bacula

I get 620,644 which means there are that many blocks containing 1024 bytes each or
approximately 635 MB of data. After doing the msqldump, I had a bacula.sql file that had
174,356 blocks, and after doing the mysql command to recreate the database, I ended up with a
total of 210,464 blocks rather than the original 629,644. In other words, the compressed version
of the database took approximately one third of the space of the database that had been in use for
about a year.

As a consequence, I suggest you monitor the size of your database and from time to time (once
every 6 months or year), compress it.

Compacting Your SQLite Database

First please read the previous section that explains why it is necessary to compress a database.
SQLite version 2.8.4 and greater have the Vacuum command for compacting the database.

Bacula Storage Management System

Compacting Your MySQL Database 150

cd working−directory
echo '.vacuum' | sqlite bacula.db

As an alternative, you can use the following commands, adapted to your system:

cd working−directory
echo '.dump' | sqlite bacula.db > bacula.sql
rm −f bacula.db
sqlite bacula.db < bacula.sql
rm −f bacula.sql

Where working−directory is the directory that you specified in the Director's configuration file.
Note, in the case of SQLite, it is necessary to completely delete (rm) the old database before
creating a new compressed version.

Backing Up Your Bacula Database

If ever the machine on which you Bacula database crashes, and you need to restore from backup
tapes, one of your first priorities will probably be to recover the database. Although Bacula will
happily backup your catalog database if it is specified in the FileSet, this is not a very good way
to do it because the database will be saved while Bacula is modifying it. Thus the database may
be in and instable state. Worse yet, you will backup the database before all the Bacula updates
have been applied.

To resolve these problems, you need backup the database after all the backup jobs have been run.
In addition, you will want to make a copy while Bacula is not modifying it. To do so, you can
use two scripts provided in the release make_catalog_backup and delete_catalog_backup.
These files will be automatically generated along with all the other Bacula scripts. The first script
will make an ASCII copy of your Bacula database into bacula.sql in the working directory you
specified on your configuration, and the second will delete the bacula.sql file.

The basic sequence of events to make this work correctly is as follows:

Run all your nightly backups•
After running your nightly backups, run a Catalog backup Job•
The Catalog backup job must be scheduled after your last nightly backup•
You use RunBeforeJob to create the ASCII backup file and RunAfterJob to clean up•

Assuming that you start all your nightly backup jobs at 1:05 am (and that they run one after
another), you can do the catalog backup with the following additional Director configuration
statements:

Backup the catalog database (after the nightly save)
Job {
 Name = "BackupCatalog"
 Type = Backup
 Client=rufus−fd
 FileSet="Catalog"
 Schedule = "WeeklyCycleAfterBackup"
 Storage = DLTDrive
 Messages = Standard
 Pool = Default
 RunBeforeJob = "/home/kern/bacula/bin/make_catalog_backup"

Bacula Storage Management System

Backing Up Your Bacula Database 151

 RunAfterJob = "/home/kern/bacula/bin/delete_catalog_backup"
}

This schedule does the catalog. It starts after the WeeklyCycle
Schedule {
 Name = "WeeklyCycleAfterBackup
 Run = Full sun−sat at 1:10
}

This is the backup of the catalog
FileSet {
 Name = "Catalog"
 Include = signature=MD5 {
 @working_directory@/bacula.sql
 }
}

Backing Up Third Party Databases

If you are running a database in production mode on your machine, Bacula will happily backup
the files, but if the database is in use while Bacula is reading it, you may back it up in an
unstable state.

The best solution is to shutdown your database before backing it up, or use some tool specific to
your database to make a valid live copy perhaps by dumping the database in ASCII format. I am
not a database expert, so I cannot provide you advice on how to do this, but if you are unsure
about how to backup your database, you might try visiting the Backup Central site, which has
been renamed Storage Mountain (www.backupcentral.com). In particular, their Free Backup and
Recovery Software page has links to scripts that show you how to shutdown and backup most
major databases.

Database Size

As mentioned above, if you do not do automatic pruning, your Catalog will grow each time you
run a Job. Normally, you should decide how long you want File records to be maintained in the
Catalog and set the File Retention period to that time. Then you can either wait and see how big
your Catalog gets or make a calculation assuming approximately 154 bytes for each File saved
and knowing the number of Files that are saved during each backup and the number of Clients
you backup.

For example, suppose you do a backup of two systems, each with 100,000 files. Suppose further
that you do a Full backup weekly and an Incremental every day, and that the Incremental backup
typically saves 4,000 files. The size of your database after a month can roughly be calculated as:

 Size = 154 * No. Systems * (100,000 * 4 + 10,000 * 26)

where we have assumed 4 weeks in a month and 26 incremental backups per month. This would
give the following:

 Size = 154 * 2 * (100,000 * 4 + 10,000 * 26)
or
 Size = 308 * (400,000 + 260,000)

Bacula Storage Management System

Backing Up Third Party Databases 152

http://www.backupcentral.com/toc-free-backup-software.html
http://www.backupcentral.com/toc-free-backup-software.html

or
 Size = 203,280,000 bytes

So for the above two systems, we should expect to have a database size of approximately 200
Megabytes. Of course, this will vary according to how many files are actually backed up.

Below are some statistics for a MySQL database containing Job records for five Clients
beginning September 2001 through May 2002 (8.5 months) and File records for the last 80 days.
(Older File records have been pruned). For these systems, only the user files and system files that
change are backed up. The core part of the system is assumed to be easily reloaded from the
RedHat rpms.

In the list below, the files (corresponding to Bacula Tables) with the extension .MYD contain the
data records whereas files with the extension .MYI contain indexes.

You will note that the File records (containing the file attributes) make up the large bulk of the
number of records as well as the space used (459 Mega Bytes including the indexes). As a
consequence, the most important Retention period will be the File Retention period. A quick
calculation shows that for each File that is saved, the database grows by approximately 150
bytes.

 Size in
 Bytes Records File
 ============ ========= ===========
 168 5 Client.MYD
 3,072 Client.MYI
 344,394,684 3,080,191 File.MYD
 115,280,896 File.MYI
 2,590,316 106,902 Filename.MYD
 3,026,944 Filename.MYI
 184 4 FileSet.MYD
 2,048 FileSet.MYI
 49,062 1,326 JobMedia.MYD
 30,720 JobMedia.MYI
 141,752 1,378 Job.MYD
 13,312 Job.MYI
 1,004 11 Media.MYD
 3,072 Media.MYI
 1,299,512 22,233 Path.MYD
 581,632 Path.MYI
 36 1 Pool.MYD
 3,072 Pool.MYI
 5 1 Version.MYD
 1,024 Version.MYI

This database has a total size of approximately 450 Megabytes.

If we were using SQLite, the determination of the total database size would be much easier since
it is a single file, but we would have less insight to the size of the individual tables as we have in
this case.

Bacula Storage Management System

Backing Up Third Party Databases 153

Disaster Recovery Using Bacula Index Automatic Volume Recycling

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 11

Catalog Maintenance Index Backing Up to Disk Volumes

Bacula Storage Management System

Backing Up Third Party Databases 154

http://www.bacula.org/

Automatic Volume Recycling
Normally, Bacula will write on a volume, and once the tape is written, it may append to the
volume, but it will never overwrite the data thus destroying it. When we speak of recycling
volumes, we mean that Bacula can write over the previous contents of a volume. Thus all
previous data will be lost.

If you are like me, you may not want Bacula to automatically recycle (reuse) tapes. This requires
a large number of tapes, and when I need a tape, I manually recycle it. For more on manual
recycling, see the section entitled Manually Recycling Volumes below in this chapter.

Most people prefer to have a Pool of tapes that are used for daily backups and recycled once a
week, another Pool of tapes that are used for Full backups once a week and recycled monthly,
and finally a Pool of tapes that are used once a month and recycled after a year or two. With a
scheme like this, your pool of tapes remains constant.

By properly defining your Volume Pools with appropriate Retention periods, Bacula can manage
the recycling (such as defined above) automatically.

Automatic recycling of Volumes is controlled by three records in the Pool resource definition in
the Director's configuration file. These three records are:

AutoPrune = yes•
VolumeRetention = <time>•
Recycle = yes•

Automatic recycling of Volumes is performed by Bacula only when it wants a new Volume and
no appendable Volumes are available in the Pool. It will then search the Pool for any Volumes
with the Recycle flag set and whose Volume Status is Full. At that point, the recycling occurs in
two steps. The first is that a Volume must be purged of all Jobs and Files, and the second step is
the actual recycling of the Volume. The Volume will be purged if the VolumeRetention period
has expired. If no volumes can be recycled for any of the reasons stated above, Bacula will
request operator intervention (i.e. it will ask you to label a new volume).

A key point mentioned above that can be a source of frustration is that Bacula will only recycle
purged Volumes if there is no other appendable Volume available. So, if you wish to "force"
Bacula to use a purged Volume, you must first ensure that no other Volume in the Pool is marked
Append. If necessary, you can manually set a volume to Full. The reason for this is that Bacula
wants to preserve the data on your old tapes (even though purged from the catalog) as long as
absolutely possible before overwriting it.

Automatic Pruning

By setting AutoPrune to yes you will permit Bacula to automatically prune all Volumes in the
Pool when a Job needs another Volume. When a Job requests another volume and there are no
Volumes with Volume Status Append available, Bacula will begin volume pruning. This means
that all Jobs that are older than the VolumeRetention period will be pruned from every Volume
that has Volume Status Full or Used and has Recycle set to yes. Pruning consists of deleting the
corresponding Job, File, and JobMedia records from the catalog database. No change to the
physical data on the Volume occurs during the pruning process. When all files are pruned from a

Automatic Volume Recycling 155

Volume (i.e. no records in the catalog), the Volume will be marked as Purged implying that no
Jobs remain on the volume. The Pool records that control the pruning are described below.

AutoPrune = <yes/no>
If AutoPrune is set to yes (default), Bacula (version 1.20 or greater) will automatically
apply the Volume retention period when running a Job and it needs a new Volume but no
appendable volumes are available. At that point, Bacula will prune all Volumes that can
be pruned (i.e. AutoPrune set) in an attempt to find a usable volume. If during the
autoprune, all files are pruned from the Volume, it will be marked with VolStatus
Purged. The default is yes.

Volume Retention = <time−period−specification>
The Volume Retention record defines the length of time that Bacula will guarantee that
the Volume is not reused counting from the time the last job stored on the Volume
terminated.
When this time period expires, and if AutoPrune is set to yes, and a new Volume is
needed, but no appendable Volume is available, Bacula will prune (remove) Job records
that are older than the specified Volume Retention period.

The Volume Retention period takes precedence over any Job Retention period you have
specified in the Client resource. It should also be noted, that the Volume Retention
period is obtained by reading the Catalog Database Media record rather than the Pool
resource record. This means that if you change the VolumeRetention in the Pool resource
record, you must ensure that the corresponding change is made in the catalog. When all
files are removed from the volume, its VolStatus is set to Purged.

Retention periods are specified in seconds, minutes, hours, days, weeks, months,
quarters, or years on the record. See the Configuration chapter of this manual for
additional details of time specification.

The default is 1 year.

Recycle = <yes/no>
This statement tells Bacula whether or not the particular Volume can be recycled (i.e.
rewritten). If Recycle is set to no (the default), then even if Bacula prunes all the Jobs on
the volume and it is marked Purged, it will not consider the tape for recycling. If
Recycle is set to yes and all Jobs have been pruned, the volume status will be set to
Purged and the volume may then be reused when another volume is needed. If the
volume is reused, it is relabeled with the same Volume Name, however all previous data
will be lost.

Note, it is also possible to "force" pruning of all Volumes in the Pool associated with a Job by
adding Prune Files = yes to the Job resource.

Recycling Algorithm

After all Volumes of a Pool have been pruned (as mentioned above, this happens when a Job
needs a new Volume and no appendable Volumes are available), Bacula will look for the oldest
Volume that is Purged (all Jobs and Files expired), and if the Recycle flag is on (Recycle=yes)
for that Volume, Bacula will relabel it and write new data on it.

Bacula Storage Management System

Recycling Algorithm 156

The full recycling algorithm that Bacula uses when it needs a new Volume is:

Search the Pool for a Volume with VolStatus=Append (if there is more than one, the
Volume with the lowest MediaId is chosen)

•

Search the Pool for a Volume with VolStatus=Recycle (if there is more than one, the
Volume with the lowest MediaId is chosen)

•

Prune volumes applying Volume retention period (Volumes with VolStatus Full, Used,
or Append are pruned)

•

Search the Pool for a Volume with VolStatus=Purged•
Attempt to create a new Volume if automatic labeling enabled•
Prune the oldest Volume if RecycleOldestVolume=yes (the Volume with the oldest
LastWritten date and VolStatus equal to Full, Recycle, Purged, Used, or Append is
chosen). This record ensures that all retention periods are properly respected.

•

Purge the oldest Volume if PurgeOldestVolume=yes (the Volume with the oldest
LastWritten date and VolStatus equal to Full, Recycle, Purged, Used, or Append is
chosen). We strongly recommend against the use of PurgeOldestVolume as it can quite
easily lead to loss of current backup data.

•

Give up and ask operator•

The above occurs when Bacula has finished writing a Volume or when no Volume is present in
the drive.

On the other hand, if you have inserted a different Volume after the last job, and Bacula
recognizes the Volume as valid, it will request authorization from the Director to use this
Volume. In this case, if you have set Recycle Current Volume = yes and the Volume is marked
as Used or Full, Bacula will prune the volume and if all jobs were removed during the pruning
(respecting the retention periods), the Volume will be recycled and used. For this to work, you
must have Accept Any Volume = yes in the Pool. The recycling algorithm in this case is:

If the VolStatus is Append or Recycle and Accept Any Volume is set, the volume will
be used.

•

If Recycle Current Volume is set and the volume is marked Full or Used, Bacula will
prune the volume (applying the retention period). If all Jobs are pruned from the volume,
it will be recycled.

•

This permits users to manually change the Volume every day and load tapes in an order different
from what is in the catalog, and if the volume does not contain a current copy of your backup
data, it will be used.

Recycle Status

Each Volume inherits the Recycle status (yes or no) from the Pool resource record when the
Media record is created (normally when the Volume is labeled). This Recycle status is stored in
the Media record of the Catalog. Using the the Console program, you may subsequently change
the Recycle status for each Volume. For example in the following output from list volumes:

+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−+
| VolumeName | MediaType | VolStatus | VolBytes | LastWritten | VolReten | Recyc |
+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−+
| File0001 | File | Full | 4190055 | 2002−05−25 18:42 | 14400 | 1 |
| File0002 | File | Full | 1896460 | 2002−05−26 18:05 | 14400 | 1 |

Bacula Storage Management System

Recycle Status 157

File0003	File	Full	1896460	2002−05−26 20:05	14400	1
File0004	File	Full	1896460	2002−05−26 21:35	14400	1
File0005	File	Full	1896460	2002−05−26 22:05	14400	1
File0006	File	Full	1896460	2002−05−26 19:35	14400	1
File0007	File	Purged	1896466	2002−05−26 18:05	14400	1
+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−+

all the volumes are marked as recyclable, and the last Volume, File0007 has been purged, so it
may be immediately recycled. The other volumes are all marked recyclable and when their
Volume Retention period (14400 seconds or 4 hours) expires, they will be eligible for pruning,
and possible recycling. Even though Volume File0007 has been purged, all the data on the
Volume is still recoverable. A purged Volume simply means that there are no entries in the
Catalog. Even if the Volume Status is changed to Recycle, the data on the Volume will be
recoverable. The data is lost only when the Volume is re−labeled and re−written.

To modify Volume File0001 so that it cannot be recycled, you use the update volume pool=File
command in the console program, or simply update and Bacula will prompt you for the
information.

+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−+
| VolumeName | MediaType | VolStatus | VolBytes | LastWritten | VolReten | Recyc |
+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−+
File0001	File	Full	4190055	2002−05−25 18:42	14400	0
File0002	File	Full	1897236	2002−05−26 23:35	14400	1
File0003	File	Full	1896460	2002−05−26 20:05	14400	1
File0004	File	Full	1896460	2002−05−26 21:35	14400	1
File0005	File	Full	1896460	2002−05−26 22:05	14400	1
File0006	File	Full	1896460	2002−05−26 19:35	14400	1
File0007	File	Purged	1896466	2002−05−26 18:05	14400	1
+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−+

In this case, File0001 will never be automatically recycled. The same effect can be achieved by
setting the Volume Status to Read−Only.

Making Bacula Use a Single Tape

Most people will want Bacula to fill a tape and when it is full, a new tape will be mounted, and
so on. However, as an extreme example, it is possible for Bacula to write on a single tape, and
every night to rewrite it. To get this to work, you must do two things: first, set the
VolumeRetention to less than your save period (one day), and the second item is to make Bacula
mark the tape as full after using it once. This is done using UseVolumeOnce = yes. If this latter
record is not used and the tape is not full after the first time it is written, Bacula will simply
append to the tape and eventually request another volume. Using the tape only once, forces the
tape to be marked Full after each use, and the next time Bacula runs, it will recycle the tape.

An example Pool resource that does this is:

Pool {
 Name = DDS−4
 Use Volume Once = yes
 Pool Type = Backup
 AutoPrune = yes
 VolumeRetention = 12h # expire after 12 hours
 Recycle = yes

Bacula Storage Management System

Making Bacula Use a Single Tape 158

}

A Daily, Weekly, Monthly Tape Usage Example

This example is meant to show you how one could define a fixed set of volumes that Bacula will
rotate through on a regular schedule. There are an infinite number of such schemes, all of which
have various advantages and disadvantages.

We start with the following assumptions:

A single tape has more than enough capacity to do a full save.•
There are 10 tapes that are used on a daily basis for incremental backups. They are
prelabeled Daily1 ... Daily10.

•

There are 4 tapes that are used on a weekly basis for full backups. They are labeled
Week1 ... Week4.

•

There are 12 tapes that are used on a monthly basis for full backups. They are numbered
Month1 ... Month12

•

A full backup is done every Saturday evening (tape inserted Friday evening before
leaving work).

•

No backups are done over the weekend (this is easy to change).•
The first Friday of each month, a Monthly tape is used for the Full backup.•
Incremental backups are done Monday − Friday (actually Tue−Fri mornings).•

We start the system by doing a Full save to one of the weekly volumes or one of the monthly
volumes. The next morning, we remove the tape and insert a Daily tape. Friday evening, we
remove the Daily tape and insert the next tape in the Weekly series. Monday, we remove the
Weekly tape and re−insert the Daily tape. On the first Friday of the next month, we insert the
next Monthly tape in the series rather than a Weekly tape, then continue. When a Daily tape
finally fills up, Bacula will request the next one in the series, and the next day when you notice
the email message, you will mount it and Bacula will finish the unfinished incremental backup.

What does this give? Well, at any point, you will have a the last complete Full save plus several
Incremental saves. For any given file your want to recover (or your whole system), you will have
a copy of that file every day for at least the last 14 days. For older versions, you will have at least
3 and probably 4 Friday full saves of that file, and going back further, you will have a copy of
that file made on the beginning of the month for at least a year.

So you have copies of any file (or your whole system) for at least a year, but as you go back in
time, the time between copies increases from daily to weekly to monthly.

What would the Bacula configuration look like to implement such a scheme?

Schedule {
 Name = "NightlySave"
 Run = Level=Full Pool=Monthly 1st sat at 03:05
 Run = Level=Full Pool=Weekly 2nd−5th sat at 03:05
 Run = Level=Incremental Pool=Daily tue−fri at 03:05
}

Job {
 Name = "NightlySave"
 Type = Backup

Bacula Storage Management System

A Daily, Weekly, Monthly Tape Usage Example 159

 Level = Full
 Client = LocalMachine
 FileSet = "File Set"
 Messages = Standard
 Storage = DDS−4
 Pool = Daily
 Schedule = "NightlySave"
}

Definition of file storage device
Storage {
 Name = DDS−4
 Address = localhost
 SDPort = 9103
 Password = XXXXXXXXXXXXX
 Device = FileStorage
 Media Type = 8mm
}

FileSet {
 Name = "File Set"
 Include = signature=MD5 {
 fffffffffffffffff
 }
 Exclude = { *.o }
}

Pool {
 Name = Daily
 Pool Type = Backup
 AutoPrune = yes
 VolumeRetention = 10d # recycle in 10 days
 Maximum Volumes = 10
 Recycle = yes
}

Pool {
 Name = Weekly
 Use Volume Once = yes
 Pool Type = Backup
 AutoPrune = yes
 VolumeRetention = 30d # recycle in 30 days (default)
 Recycle = yes
}

Pool {
 Name = Monthly
 Use Volume Once = yes
 Pool Type = Backup
 AutoPrune = yes
 VolumeRetention = 365d # recycle in 1 year
 Recycle = yes
}

Automatic Pruning and Recycling Example

Perhaps the best way to understand the various resource records that come into play during
automatic pruning and recycling is to run a Job that goes through the whole cycle. If you add the
following resources to your Director's configuration file:

Bacula Storage Management System

 Automatic Pruning and Recycling Example 160

Schedule {
 Name = "30 minute cycle"
 Run = Level=Full Pool=File Messages=Standard Storage=File hourly at 0:05
 Run = Level=Full Pool=File Messages=Standard Storage=File hourly at 0:35
}

Job {
 Name = "Filetest"
 Type = Backup
 Level = Full
 Client=XXXXXXXXXX
 FileSet="Test Files"
 Messages = Standard
 Storage = File
 Pool = File
 Schedule = "30 minute cycle"
}

Definition of file storage device
Storage {
 Name = File
 Address = XXXXXXXXXXX
 SDPort = 9103
 Password = XXXXXXXXXXXXX
 Device = FileStorage
 Media Type = File
}

FileSet {
 Name = "Test Files"
 Include = signature=MD5 {
 fffffffffffffffff
 }
 Exclude = { *.o }
}

Pool {
 Name = File
 Use Volume Once = yes
 Pool Type = Backup
 LabelFormat = File
 AutoPrune = yes
 VolumeRetention = 4h
 Maximum Volumes = 12
 Recycle = yes
}

Where you will need to replace the ffffffffff's by the appropriate files to be saved for your
configuration. For the FileSet Include, choose a directory that has one or two megabytes
maximum since there will probably be approximately 8 copies of the directory that Bacula will
cycle through.

In addition, you will need to add the following to your Storage daemon's configuration file:

Device {
 Name = FileStorage
 Media Type = File
 Archive Device = /tmp
 LabelMedia = yes; # lets Bacula label unlabeled media

Bacula Storage Management System

 Automatic Pruning and Recycling Example 161

 Random Access = Yes;
 AutomaticMount = yes; # when device opened, read it
 RemovableMedia = no;
 AlwaysOpen = no;
}

With the above resources, Bacula will start a Job every half hour that saves a copy of the
directory you chose to /tmp/File0001 ... /tmp/File0012. After 4 hours, Bacula will start recycling
the backup Volumes (/tmp/File0001 ...). You should see this happening in the output produced.
Bacula will automatically create the Volumes (Files) the first time it uses them.

To turn it off, either delete all the resources you've added, or simply comment out the Schedule
record in the Job resource.

Manually Recycling Volumes

Although automatic recycling of Volumes is implemented in version 1.20 and later (see the
Automatic Recycling of Volumes chapter of this manual), you may want to manually force reuse
(recycling) of a Volume.

Assuming that you want to keep the Volume name, but you simply want to write new data on the
tape, the steps to take are:

Use the update volume command in the Console to ensure that the Recycle field is set
to 1

•

Use the purge jobs volume command in the Console to mark the Volume as Purged.
Check by using list volumes.

•

Once the Volume is marked Purged, it will be recycled the next time a Volume is needed.

If you wish to reuse the tape by giving it a new name, follow the following steps:

Use the purge jobs volume command in the Console to mark the Volume as Purged.
Check by using b>list volumes.

•

In Bacula version 1.30 or greater, use the Console relabel command to relabel the
Volume.

•

Please note that the relabel command applies only to tape Volumes.

For Bacula versions prior to 1.30 or to manually relabel the Volume, use the instructions below:

Use the delete volume command in the Console to delete the Volume from the Catalog.•
If the a different tape is mounted, use the unmount command, remove the tape, and
insert the tape to be renamed.

•

Write an EOF mark in the tape using the following commands:•

 mt −f /dev/nst0 rewind
 mt −f /dev/nst0 weof

where you replace /dev/nst0 with the appropriate device name on your system.
Use the label command to write a new label to the tape and to enter it in the catalog.•

Bacula Storage Management System

Manually Recycling Volumes 162

Please be aware that the delete command can be dangerous. Once it is done, to recover the File
records, you must either restore your database as it was before the delete command, or use the
bscan utility program to scan the tape and recreate the database entries.

Catalog Maintenance Index Backing Up to Disk Volumes

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 12

Recycling Your Volumes Index Backup Strategies

Bacula Storage Management System

Manually Recycling Volumes 163

http://www.bacula.org/

Backing Up to Disk Volumes
If you have a lot of harddisk storage or you absolutely must have your backups run within a
small time window, you may want to direct Bacula to backup to disk Volumes rather than tape
Volumes. This chapter is intended to give you some of the options that are available to you so
that you can manage those disk volumes.

Key Concepts and Resource Records

Getting Bacula to write to disk rather than tape in the simplest case is rather easy. In the Storage
daemon's configuration file, you simply define an Archive Device to be a directory. For
example, if you want your disk backups to go into the directory /home/bacula/backups, you
could use the following:

Device {
 Name = FileBackup
 Media Type = File
 Archive Device = /home/bacula/backups
 Random Access = Yes;
 AutomaticMount = yes;
 RemovableMedia = no;
 AlwaysOpen = no;
}

Assuming you have the appropriate Storage resource in your Director's configuration file that
references the above Device resource,

Storage {
 Name = FileStorage
 Address = ...
 Password = ...
 Device = FileBackup
 Media Type = File
}

Bacula will then write the archive to the file /home/bacula/backups/<volume−name> where
<volume−name> is the volume name of a Volume defined in the Pool. For example, if you have
labeled a Volume named Vol001, Bacula will write to the file /home/bacula/backups/Vol001.
Although you can later move the archive file to another directory, you should not rename it or it
will become unreadable by Bacula. This is because each archive has the filename as part of the
internal label, and the internal label must agree with the system filename before Bacula will use
it.

Although this is quite simple, there are a number of problems, the first is that unless you specify
otherwise, Bacula will always write to the same volume until you run out of disk space.

Pool Options to Limit the Volume Usage

Some of the options you have, all of which are specified in the Pool record, are:

To write each Volume only once (i.e. one Job per Volume or file in this case), use:•

Backing Up to Disk Volumes 164

UseVolumeOnce = yes.

To write nnn Jobs to each Volume, use:•

Maximum Job Volumes = nnn.

To limit the maximum size of each Volume, use:•

Maximum Volume Bytes = mmmm.

To limit the use time (i.e. write the Volume for a maximum of 5 days), use:•

Volume Use Duration = ttt.

As mentioned above, each of those directives are specified in the Pool or Pools that you use for
your Volumes. In the case of Maximum Job Volumes, Maximum Volume Bytes, and Volume
Use Duration, you can actually specify the desired value on a Volume by Volume basis. The
value specified in the Pool record becomes the default when labeling new Volumes. As an
example of the use of one of the above, suppose your Pool resource contains:

Pool {
 Name = File
 Pool Type = Backup
 Volume Use Duration = 23h
}

then if you run a backup once a day (every 24 hours), Bacula will use a new Volume each
backup because each Volume it writes can only be used for 23 hours after the first write.

Automatic Volume Labeling

Use of the above records brings up another problem −− that of labeling your Volumes. For
automated disk backup, you can either manually label each of your Volumes, or you can have
Bacula automatically label new Volumes when they are needed. While, the automatic Volume
labeling is version 1.30 and prior is a bit simplistic, but it does allow for automation, the features
added in version 1.31 permit automatic creation of a wide variety of labels including information
from environment variables and special Bacula Counter variables. Automatic Volume labeling is
enabled by making a change to both the Pool resource (Director) and to the Device resource
(Storage daemon) shown above. In the case of the Pool resource, you must provide Bacula with a
label format that it will use to create new names. In the simplest form, the label format is simply
the Volume name, to which Bacula will append a four digit number. This number starts at 0001
and is incremented for each Volume the pool contains. Thus if you modify your Pool resource to
be:

Pool {
 Name = File
 Pool Type = Backup
 Volume Use Duration = 23h
 LabelFormat = Vol
}

Bacula will create Volume names Vol0001, Vol0002, and so on when new Volumes are needed.

Bacula Storage Management System

Automatic Volume Labeling 165

Much more complex and elaborate labels can be created using variable expansion defined in the
Variable Expansion chapter of this manual.

The second change that is necessary to make automatic labeling work is to give the Storage
daemon permission to automatically label Volumes. Do so by adding LabelMedia = yes to the
Device resource as follows:

Device {
 Name = File
 Media Type = File
 Archive Device = /home/bacula/backups
 Random Access = Yes;
 AutomaticMount = yes;
 RemovableMedia = no;
 AlwaysOpen = no;
 LabelMedia = yes
}

You can find more details of the Label Format Pool record in Label Format description of the
Pool resource records.

Restricting the Number of Volumes and Recycling

Automatic labeling discussed above brings up the problem of Volume management. With the
above scheme, a new Volume will be created every day. If you have not specified Retention
periods, your Catalog will continue to fill keeping track of all the files Bacula has backed up, and
this procedure will create one new archive file (Volume) every day.

The tools Bacula gives you to help automatically manage these problems are the following:

Catalog file record retention periods, the File Retention = ttt record in the Client
resource.

1.

Catalog job record retention periods, the Job Retention = ttt record in the Client
resource.

2.

The AutoPrune = yes record in the Client resource to permit application of the above
two retention periods.

3.

The Volume Retention = ttt record in the Pool resource.4.
The AutoPrune = yes record in the Pool resource to permit application of the Volume
retention period.

5.

The Recycle = yes record in the Pool resource to permit automatic recycling of Volumes
whose Volume retention period has expired.

6.

The Recycle Oldest Volume = yes record in the Pool resource tells Bacula to Prune the
oldest volume in the Pool, and if all files were pruned to recyle this volume and use it.

7.

The Recycle Current Volume = yes record in the Pool resource tells Bacula to Prune
the currently mounted volume in the Pool, and if all files were pruned to recyle this
volume and use it.

8.

The Purge Oldest Volume = yes record in the Pool resource permits a forced recycling
of the oldest Volume when a new one is needed. N.B. This record ignores retention
periods! We highly recommend not to use this record, but instead use Recycle
Oldest Volume

9.

The Maximum Volumes = nnn record in the Pool resource to limit the number of
Volumes that can be created.

10.

Bacula Storage Management System

Restricting the Number of Volumes and Recycling 166

The first three records (File Retention, Job Retention, and AutoPrune) determine the amount of
time that Job and File records will remain in your Catalog, and they are discussed in detail in the
Automatic Volume Recycling chapter of this manual.

Volume Retention, AutoPrune, and Recycle determine how long Bacula will keep your Volumes
before reusing them, and they are also discussed in detail in the Automatic Volume Recycling
chapter of this manual.

The Maximum Volumes record can also be used in conjunction with the Volume Retention
period to limit the total number of archive Volumes (files) that Bacula will create. By setting an
appropriate Volume Retention period, a Volume will be purged just before it is needed and thus
Bacula can cycle through a fixed set of Volumes. Cycling through a fixed set of Volumes can
also be done by setting Recycle Oldest Volume = yes or Recycle Current Volume = yes. In
this case, when Bacula needs a new Volume, it will prune the specified volume.

An Example

The following example is not very practical, but can be used to demonstrate the proof of concept
in a relatively short period of time. The example consists of a single client that is backed up to a
set of 12 archive files (Volumes). Each Volume is used (written) only once, and there are four
Full saves done every hour (so the whole thing cycles around after three hours).

The Director's configuration file is as follows:

Director {
 Name = my−dir
 QueryFile = "~/bacula/bin/query.sql"
 PidDirectory = "~/bacula/working"
 WorkingDirectory = "~/bacula/working"
 Password = dir_password
}

Schedule {
 Name = "FourPerHour"
 Run = Level=Full Pool=Recycle Storage=File hourly at 0:05
 Run = Level=Full Pool=Recycle Storage=File hourly at 0:20
 Run = Level=Full Pool=Recycle Storage=File hourly at 0:35
 Run = Level=Full Pool=Recycle Storage=File hourly at 0:50
}

Job {
 Name = "RecycleExample"
 Type = Backup
 Level = Full
 Client = Rufus
 FileSet= "Example FileSet"
 Messages = Standard
 Storage = FileStorage
 Pool = Recycle
 Schedule = FourPerHour
}

FileSet {
 Name = "Example FileSet"
 Include = compression=GZIP signature=SHA1 {
 /home/kern/bacula/bin

Bacula Storage Management System

An Example 167

 }
}

Client {
 Name = Rufus
 Address = rufus
 Catalog = BackupDB
 Password = client_password
}

Storage {
 Name = FileStorage
 Address = rufus
 Password = local_storage_password # password for Storage daemon
 Device = RecycleDir # must be same as Device in Storage daemon
 Media Type = File # must be same as MediaType in Storage daemon
}

Catalog {
 Name = BackupDB
 dbname = bacula; user = bacula; password = ""
}

Messages {
 Name = Standard
 ...
}

Pool {
 Name = Recycle
 Use Volume Once = yes
 Pool Type = Backup
 LabelFormat = Vol
 AutoPrune = yes
 VolumeRetention = 2h
 Maximum Volumes = 12
 Recycle = yes
}

and the Storage daemon's configuration file is:

Storage {
 Name = my−sd
 WorkingDirectory = "~/bacula/working"
 Pid Directory = "~/bacula/working"
 MaximumConcurrentJobs = 10
}

Director {
 Name = my−dir
 Password = local_storage_password
}

Device {
 Name = RecycleDir
 Media Type = File
 Archive Device = /home/bacula/backups
 LabelMedia = yes; # lets Bacula label unlabeled media
 Random Access = Yes;

Bacula Storage Management System

An Example 168

 AutomaticMount = yes; # when device opened, read it
 RemovableMedia = no;
 AlwaysOpen = no;
}

Messages {
 Name = Standard
 director = my−dir = all
}

In this example, the Jobs will be backed up to directory /home/bacula/backups with Volume
names Vol0001, Vol0002, ... Vol0012. Every backup Job will write a new volume cycling
through the volume numbers, and two hours after a job has started, the volume will be pruned
Volume Retention = 2h.

With a little bit of work, you can change the above example into a weekly or monthly cycle (take
care about the amount of archive disk space used).

Considerations for Multiple Clients

If we take the above example and add a second Client, here are a few considerations:

Although the second client can write to the same set of Volumes, you will probably want
to write to a different set.

•

You can write to a different set of Volumes by defining a second Pool, which has a
different name and a different LabelFormat.

•

If you wish the Volumes for the second client to go into a different directory (perhaps
even on a different filesystem to spread the load), you would do so by defining a second
Device resource in the Storage daemon. The Name must be different, and the Archive
Device could be different. To ensure that Volumes are never mixed from one pool to
another, you might also define a different MediaType (e.g. File1).

•

In this example, we have two clients, each with a different Pool and a different number of
archive files retained. They also write to different directories with different Volume labeling.

The Director's configuration file is as follows:

Director {
 Name = my−dir
 QueryFile = "~/bacula/bin/query.sql"
 PidDirectory = "~/bacula/working"
 WorkingDirectory = "~/bacula/working"
 Password = dir_password
}

Basic weekly schedule
Schedule {
 Name = "WeeklySchedule"
 Run = Level=Full fri at 1:30
 Run = Level=Incremental sat−thu at 1:30
}

FileSet {
 Name = "Example FileSet"
 Include = compression=GZIP signature=SHA1 {

Bacula Storage Management System

Considerations for Multiple Clients 169

 /home/kern/bacula/bin
 }
}

Job {
 Name = "Backup−client1"
 Type = Backup
 Level = Full
 Client = client1
 FileSet= "Example FileSet"
 Messages = Standard
 Storage = File1
 Pool = client1
 Schedule = "WeeklySchedule"
}

Job {
 Name = "Backup−client2"
 Type = Backup
 Level = Full
 Client = client2
 FileSet= "Example FileSet"
 Messages = Standard
 Storage = File2
 Pool = client2
 Schedule = "WeeklySchedule"
}

Client {
 Name = client1
 Address = client1
 Catalog = BackupDB
 Password = client1_password
 File Retention = 7d # keep files in catalog only 7 days
}

Client {
 Name = client2
 Address = client2
 Catalog = BackupDB
 Password = client2_password
}

Two Storage definitions permits different directories
Storage {
 Name = File1
 Address = rufus
 Password = local_storage_password # password for Storage daemon
 Device = client1 # must be same as Device in Storage daemon
 Media Type = File # must be same as MediaType in Storage daemon
}

Storage {
 Name = File2
 Address = rufus
 Password = local_storage_password # password for Storage daemon
 Device = client2 # must be same as Device in Storage daemon
 Media Type = File # must be same as MediaType in Storage daemon
}

Catalog {

Bacula Storage Management System

Considerations for Multiple Clients 170

 Name = BackupDB
 dbname = bacula; user = bacula; password = ""
}

Messages {
 Name = Standard
 ...
}

Two pools permits different cycling periods and Volume names
Cycle through 15 Volumes (two weeks)
Pool {
 Name = client1
 Use Volume Once = yes
 Pool Type = Backup
 LabelFormat = Client1−
 AutoPrune = yes
 VolumeRetention = 13d
 Maximum Volumes = 15
 Recycle = yes
}

Cycle through 8 Volumes (1 week)
Pool {
 Name = client2
 Use Volume Once = yes
 Pool Type = Backup
 LabelFormat = Client2−
 AutoPrune = yes
 VolumeRetention = 6d
 Maximum Volumes = 8
 Recycle = yes
}

and the Storage daemon's configuration file is:

Storage {
 Name = my−sd
 WorkingDirectory = "~/bacula/working"
 Pid Directory = "~/bacula/working"
 MaximumConcurrentJobs = 10
}

Director {
 Name = my−dir
 Password = local_storage_password
}

Archive directory for Client1
Device {
 Name = client1
 Media Type = File
 Archive Device = /home/bacula/client1
 LabelMedia = yes; # lets Bacula label unlabeled media
 Random Access = Yes;
 AutomaticMount = yes; # when device opened, read it
 RemovableMedia = no;
 AlwaysOpen = no;
}

Bacula Storage Management System

Considerations for Multiple Clients 171

Archive directory for Client2
Device {
 Name = client2
 Media Type = File
 Archive Device = /home/bacula/client2
 LabelMedia = yes; # lets Bacula label unlabeled media
 Random Access = Yes;
 AutomaticMount = yes; # when device opened, read it
 RemovableMedia = no;
 AlwaysOpen = no;
}

Messages {
 Name = Standard
 director = my−dir = all
}

Recycling Your Volumes Index Backup Strategies

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 13

Backing Up to Disk Volumes Index Using Autochangers

Bacula Storage Management System

Considerations for Multiple Clients 172

http://www.bacula.org/

Backup Strategies
Although Recycling and Backing Up to Disk Volume have been discussed in previous chapters,
this chapter is meant to give you an overall view of possible backup strategies and to explain
their advantages and disadvantages.

Simple One Tape Backup

Probably the simplest strategy is to back everything up to a single tape and inserting a new (or
recycled) tape when the tape fills and Bacula requests a new tape.

Advantages

The operator intervenes only when a tape change is needed. (once a month at my site).•
There is little chance of operator error because the tape is not changed daily.•
A minimum number of tapes will be needed for a full restore. Typically the best case
will be one tape and worst two.

•

You can easily arrange for the Full backup to occur a different night of the month for
each system, thus load balancing and shortening the backup time.

•

Disadvantages

If your site burns down, you will lose your current backups, and in my case about a
month of data.

•

After a tape fills and you have put in a blank tape, the backup will continue, and this will
generally happen during working hours.

•

Practical Details

This system is very simple. When the tape fills and Bacula requests a new tape, you unmount
the tape from the Console program, insert a new tape and label it. In most cases after the label,
Bacula will automatically mount the tape and resume the backup. Otherwise, you simply mount
the tape.

Using this strategy, one typically does a Full backup once a week following by daily Incremental
backups. To minimize the amount of data written to the tape, once can do (as I do) a Full backup
once a month on the first Sunday of the month, a Differential backup on the 2nd−5th Sunday of
the month, and incremental backups the rest of the week.

Manually Changing Tapes

If you use the strategy presented above, Bacula will ask you to change the tape, and you will
unmount it and the remount it when you have inserted the new tape.

If you do not wish to interact with Bacula to change each tape, there are several ways to get
Bacula to release the tape:

In your Storage daemon's Device resource, set
AlwaysOpen = no

•

Backup Strategies 173

In this case, Bacula will release the tape after every job. If you run several jobs, the tape
will be rewound and repositioned to the end at the beginning of every job. This is not
very efficient, but does let you change the tape whenever you want.
Use a RunAfterJob statement to run a script after your last job. This could also be an
Admin job that runs after all your backup jobs. The script could be something like:

•

 #!/bin/sh
 /full−path/console −c /full−path/console.conf <<END_OF_DATA
 release storage=your−storage−name
 END_OF_DATA

In this example, you would have AlwaysOpen=yes, but the release command would tell
Bacula to rewind the tape and on the next job assume the tape has changed. This strategy
may not work on some systems, or on autochangers because Bacula will still keep the
drive open.
The final strategy is the similar to the previous case except that you would use the
unmount command to force Bacula to release the drive. Then you would eject the tape,
and remount it as follows:

•

 #!/bin/sh
 /full−path/console −c /full−path/console.conf < unmount storage=your−storage−name
 END_OF_DATA
 # the following is a shell command
 mt eject
 /full−path/console −c /full−path/console.conf <<END_OF_DATA
 mount storage=your−storage−name
 END_OF_DATA

Daily Tape Rotation

This scheme is quite different from the one mentioned above in that a Full backup is done to a
different tape every day of the week. Generally, the backup will cycle continuously through 5 or
6 tapes each week. Variations are to use a different tape each Friday, and possibly at the
beginning of the month. Thus if backups are done Monday through Friday only, you need only 5
tapes, and by having two Friday tapes, you need a total of 6 tapes. Many sites run this way, or
using modifications of it based on two week cycles or longer.

Advantages

All the data is stored on a single tape, so recoveries are simple and faster.•
Assuming the previous day's tape is taken offsite each day, a maximum of one days data
will be lost if the site burns down.

•

Disadvantages

The tape must be changed every day requiring a lot of operator intervention.•
More errors will occur because of human mistakes.•
If the wrong tape is inadvertently mounted, the Backup for that day will not occur
exposing the system to data loss.

•

Bacula Storage Management System

Daily Tape Rotation 174

There is much more movement of the tape each day (rewinds) leading to shorter tape
drive life time.

•

Initial setup of Bacula to run in this mode is more complicated than the Single tape
system described above.

•

Depending on the number of systems you have and their data capacity, it may not be
possible to do a Full backup every night for time reasons or reasons of tape capacity.

•

Practical Details

The simplest way to "force" Bacula to use a different tape each day is to define a different Pool
for each day of the the week a backup is done. In addition, you will need to specify appropriate
Job and File retention periods so that Bacula will relabel and overwrite the tape each week rather
than appending to it. Nic Bellamy has supplied an actual working model of this which we include
here.

What is important is to create a different Pool for each day of the week, and on the run statement
in the Schedule, to specify which Pool is to be used. He has one Schedule that accomplishes this,
and a second Schedule that does the same thing for the Catalog backup run each day after the
main backup (Priorities were not available when this script was written). In addition, he uses a
Max Start Delay of 22 hours so that if the wrong tape is premounted by the operator, the job
will be automatically canceled, and the backup cycle will re−synchronize the next day. He has
named his Friday Pool WeeklyPool because in that Pool, he wishes to have several tapes to be
able to restore to a time older than one week.

And finally, in his Storage daemon's Device resource, he has Automatic Mount = yes and
Always Open = No. This is necessary for the tape ejection to work in his end_of_backup.sh
script below.

For example, his bacula−dir.conf file looks like the following:

/etc/bacula/bacula−dir.conf
#
Bacula Director Configuration file
#

Director {
 Name = ServerName
 DIRport = 9101
 QueryFile = "/etc/bacula/query.sql"
 WorkingDirectory = "/var/lib/bacula"
 PidDirectory = "/var/run"
 SubSysDirectory = "/var/lock/subsys"
 Maximum Concurrent Jobs = 1
 Password = "console−pass"
 Messages = Standard
}

#
Define the main nightly save backup job
#
Job {
 Name = "NightlySave"
 Type = Backup
 Client = ServerName
 FileSet = "Full Set"

Bacula Storage Management System

Practical Details 175

 Schedule = "WeeklyCycle"
 Storage = Tape
 Messages = Standard
 Pool = Default
 Write Bootstrap = "/var/lib/bacula/NightlySave.bsr"
 Max Start Delay = 22h
}

Backup the catalog database (after the nightly save)
Job {
 Name = "BackupCatalog"
 Type = Backup
 Client = ServerName
 FileSet = "Catalog"
 Schedule = "WeeklyCycleAfterBackup"
 Storage = Tape
 Messages = Standard
 Pool = Default
 # This creates an ASCII copy of the catalog
 RunBeforeJob = "/usr/lib/bacula/make_catalog_backup −u bacula"
 # This deletes the copy of the catalog, and ejects the tape
 RunAfterJob = "/etc/bacula/end_of_backup.sh"
 Write Bootstrap = "/var/lib/bacula/BackupCatalog.bsr"
 Max Start Delay = 22h
}

Standard Restore template, changed by Console program
Job {
 Name = "RestoreFiles"
 Type = Restore
 Client = ServerName
 FileSet = "Full Set"
 Storage = Tape
 Messages = Standard
 Pool = Default
 Where = /tmp/bacula−restores
}

List of files to be backed up
FileSet {
 Name = "Full Set"
 Include = signature=MD5 {
 /
 /data
 }
 Exclude = { /proc /tmp /.journal }
}

#
When to do the backups
#
Schedule {
 Name = "WeeklyCycle"
 Run = Level=Full Pool=MondayPool Monday at 8:00pm
 Run = Level=Full Pool=TuesdayPool Tuesday at 8:00pm
 Run = Level=Full Pool=WednesdayPool Wednesday at 8:00pm
 Run = Level=Full Pool=ThursdayPool Thursday at 8:00pm
 Run = Level=Full Pool=WeeklyPool Friday at 8:00pm
}

Bacula Storage Management System

Practical Details 176

This does the catalog. It starts after the WeeklyCycle
Schedule {
 Name = "WeeklyCycleAfterBackup"
 Run = Level=Full Pool=MondayPool Monday at 8:15pm
 Run = Level=Full Pool=TuesdayPool Tuesday at 8:15pm
 Run = Level=Full Pool=WednesdayPool Wednesday at 8:15pm
 Run = Level=Full Pool=ThursdayPool Thursday at 8:15pm
 Run = Level=Full Pool=WeeklyPool Friday at 8:15pm
}

This is the backup of the catalog
FileSet {
 Name = "Catalog"
 Include = signature=MD5 {
 /var/lib/bacula/bacula.sql
 }
}

Client (File Services) to backup
Client {
 Name = ServerName
 Address = dionysus
 FDPort = 9102
 Catalog = MyCatalog
 Password = "client−pass"
 File Retention = 30d
 Job Retention = 30d
 AutoPrune = yes
}

Definition of file storage device
Storage {
 Name = Tape
 Address = dionysus
 SDPort = 9103
 Password = "storage−pass"
 Device = Tandberg
 Media Type = MLR1
}

Generic catalog service
Catalog {
 Name = MyCatalog
 dbname = bacula; user = bacula; password = ""
}

Reasonable message delivery −− send almost all to email address
and to the console
Messages {
 Name = Standard
 mailcommand = "/usr/sbin/smtp −h localhost −f \"\(Bacula\) %r\"
 −s \"Bacula: %t %e of %c %l\" %r"
 operatorcommand = "/usr/sbin/smtp −h localhost −f \"\(Bacula\) %r\"
 −s \"Bacula: Intervention needed for %j\" %r"
 mail = root@localhost = all, !skipped
 operator = root@localhost = mount
 console = all, !skipped, !saved
 append = "/var/lib/bacula/log" = all, !skipped
}

Pool definitions

Bacula Storage Management System

Practical Details 177

#
Default Pool for jobs, but will hold no actual volumes
Pool {
 Name = Default
 Pool Type = Backup
}

Pool {
 Name = MondayPool
 Pool Type = Backup
 Recycle = yes
 AutoPrune = yes
 Volume Retention = 6d
 Accept Any Volume = yes
 Maximum Volume Jobs = 2
}

Pool {
 Name = TuesdayPool
 Pool Type = Backup
 Recycle = yes
 AutoPrune = yes
 Volume Retention = 6d
 Accept Any Volume = yes
 Maximum Volume Jobs = 2
}

Pool {
 Name = WednesdayPool
 Pool Type = Backup
 Recycle = yes
 AutoPrune = yes
 Volume Retention = 6d
 Accept Any Volume = yes
 Maximum Volume Jobs = 2
}

Pool {
 Name = ThursdayPool
 Pool Type = Backup
 Recycle = yes
 AutoPrune = yes
 Volume Retention = 6d
 Accept Any Volume = yes
 Maximum Volume Jobs = 2
}

Pool {
 Name = WeeklyPool
 Pool Type = Backup
 Recycle = yes
 AutoPrune = yes
 Volume Retention = 12d
 Accept Any Volume = yes
 Maximum Volume Jobs = 2
}

EOF

Note, the mailcommand and operatorcommand should be on a single line each. They were split

Bacula Storage Management System

Practical Details 178

to preserve the proper page width. In order to get Bacula to release the tape after the nightly
backup, he uses a RunAfterJob script that deletes the ASCII copy of the database back and then
rewinds and ejects the tape. The following is a copy of end_of_backup.sh

#! /bin/sh

/usr/lib/bacula/delete_catalog_backup

mt rewind
mt eject

exit 0

Finally, if you list his Volumes, you get something like the following:

*list media

Using default Catalog name=MyCatalog DB=bacula

Pool: WeeklyPool

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| 5 | Friday_1 | MLR1 | Used | 2157171998| 2003−07−11 20:20| 103680| 1 |

| 6 | Friday_2 | MLR1 | Append | 0 | 0 | 103680| 1 |

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

Pool: MondayPool

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| 2 | Monday | MLR1 | Used | 2260942092| 2003−07−14 20:20| 518400| 1 |

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

Pool: TuesdayPool

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| 3 | Tuesday | MLR1 | Used | 2268180300| 2003−07−15 20:20| 518400| 1 |

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

Pool: WednesdayPool

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| 4 | Wednesday | MLR1 | Used | 2138871127| 2003−07−09 20:2 | 518400| 1 |

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

Pool: ThursdayPool

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| 1 | Thursday | MLR1 | Used | 2146276461| 2003−07−10 20:50| 518400| 1 |

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

Pool: Default

No results to list.

Note, I have truncated a number of the columns so that the information fits on the width of a
page.

Bacula Storage Management System

Practical Details 179

Backing Up to Disk Volumes Index Using Autochangers

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 9

The Bacula Console Restore Command Index Catalog Maintenance

Bacula Storage Management System

Practical Details 180

http://www.bacula.org/

Disaster Recovery Using Bacula

General

When disaster strikes, you must have a plan, and you must have prepared in advance otherwise
the work of recovering your system and your files will be considerably greater. For example, if
you have not previously saved the partitioning information for your hard disk, how can you
properly rebuild it if the disk must be replaced?

Unfortunately, many of the steps one must take before and immediately after a disaster are very
operating system dependent. As a consequence, this chapter will discuss in detail disaster
recovery (also called Bare Metal Recovery) for Linux and Solaris. For Solaris, the procedures
are still quite manual. For FreeBSD the same procedures may be used but they are not yet
developed. For Win32, no luck. Apparently an "emergency boot" disk allowing access to the full
system API without interference does not exist.

Important Considerations

Here are a few important considerations concerning disaster recovery that you should take into
account before a disaster strikes.

If the building which houses your computers burns down or is otherwise destroyed, do
you have off−site backup data?

•

Disaster recovery is much easier if you have several machines. If you have a single
machine, how will you handle unforeseen events if your only machine is down?

•

Do you want to protect your whole system and use Bacula to recover everything? or do
you want to try to restore your system from the original installation disks and apply any
other updates and only restore user files?

•

Bare Metal Recovery on Linux

The remainder of this section concerns recovering a Linux computer, and parts of it relate to the
Red Hat version of Linux. The Solaris procedures can be found below.

A so called "Bare Metal" recovery is one where you start with an empty hard disk and you
restore your machine. There are also cases where you may lose a file or a directory and want it
restored. Please see the previous chapter for more details for those cases.

Bare Metal Recovery assumes that you have the following four items for your system:

An emergency boot disk allowing you to boot without a hard disk•
A Bacula Rescue Disk containing your disk information and a number of helpful scripts
(described below) including a statically linked version of the Bacula File daemon

•

A full Bacula backup of your system possibly including Incremental or Differential
backups since the last Full backup

•

A second system running the Bacula Director, the Catalog, and the Storage daemon. (this
is not an absolute requirement, but how to get around it is not yet documented here)

•

Disaster Recovery Using Bacula 181

Restrictions

In addition, to the above assumptions, the following conditions or restrictions apply:

Linux only −− tested only on Red Hat, but should work on other Linuxes•
The scripts handle only SCSI and IDE disks•
All partitions will be recreated, but only ext2, ext3, and swap partitions will be
reformatted. Any other partitions such as Windows FAT partitions will not be formatted
by the scripts, but you can do it by hand

•

You are using either lilo or grub as a boot loader, and you know which one (not
automatically detected)

•

Scripts

The scripts discussed below can be found in the rescue/linux subdirectory of the Bacula source
code.

Preparation for a Bare Metal Recovery

There are two things you should do immediately on all (Linux) systems for which you wish to do
a bare metal recovery:

Create a system emergency boot disk or alternatively a system installation boot floppy.
This step can be skipped if you have an Installation CDROM and your machine will boot
from CDROM (most modern computers will).

1.

Create a Bacula Rescue disk, which captures the current working state of your computer
and creates scripts to restore it. In addition, it creates a statically linked version of the
Bacula File daemon (Client) program, which is key to successfully restoring from
scratch.

2.

Creating an Emergency Boot Disk Here you have several choices:

Create a tomsrtbt disk (any Linux)•
Create an emergency boot disk (any Linux I think)•
Create a Red Hat Installation disk (Red Hat specific)•
Others•

tomsrtbt

My preference is to create and use a tomsrtbt emergency boot disk because it gives you a very
clean Linux environment (with a 2.2 kernel) and the most utilities. See http://www.toms.net/rb/
for more details on this. It is very easy to do and well worth the effort. However, I recommend
that you create both especially if you have non−standard hardware. You may find that tomsrtbt
will not work with your network driver (he surely has one, but you must explicitly put it on the
disk), whereas the Linux rescue is more likely to work.

Bacula Storage Management System

Restrictions 182

http://www.toms.net/rb/

Emergency Boot Disk

To create a standard Linux emergency boot disk you must first know the name of the kernel,
which you can find with:

 ls −l /boot

and looking on the vmlinux−... line or alternative do an

 uname −a

then become root and with a blank floppy in the drive, enter the following command:

 mkbootdisk −−device /dev/fd0 2.4.18−18

where you replace "2.4.18−18" by your system name.

This disk can then be booted and you will be in an environment with a number of important tools
available. Some disadvantages of this environment as opposed to tomsrtbt are that you must
enter linux rescue at the boot prompt or the boot will fail without a hard disk; it requires a disk
boot image or a CDROM to be mounted, if the CDROM is released, you will loose a large
number of the tools.

Red Hat Installation Disk

Specific to Red Hat Linux, is to create an Installation floppy, which can also be used as an
emergency boot disk. The advantage of this method is that it works in conjunction with the
installation CDROM and hence during the first part of restoring the system, you have a much
larger number of tools available (on the CDROM). This can be extremely useful if you are not
sure what really happened and you need to examine your system in detail.

To make a Red Hat Linux installation disk, do the following:

mount the Installation CDROM (/mnt/cdrom)
cd /mnt/cdrom/images
dd if=boot.img of=/dev/fd0 bs=1440k

Now that you have either an emergency boot disk or an installation floppy, you will be able to
reboot your system in the absence of your hard disk or with a damaged hard disk. This method
has the same disadvantages compared to tomsrtbt disk as mentioned above for the Emergency
Boot Disk.

Creating a Bacula Rescue Disk

Simply having a boot disk is not sufficient to re−create things as they were. To solve this
problem, we will create a Bacula Rescue disk. Everything that will be written to this disk will
first be placed into the <bacula−src>/rescue/linux directory.

The first step is while your system is up and running normally, you use a Bacula script called
getdiskinfo to capture certain important information about your hard disk configuration
(partitioning, formatting, mount points, ...). getdiskinfo will also create a number of scripts using
the information found that can be used in an emergency to repartition your disks, reformat them,

Bacula Storage Management System

Emergency Boot Disk 183

and restore a statically linked version of the Bacula file daemon so that your disk can be restored
from within a minimal boot environment.

The first step is to run getdiskinfo as follows:

 su
 cd <bacula−src>/rescue/linux
 ./getdiskinfo

getdiskinfo works for either IDE or SCSI drives and recognizes both ext2 and ext3 file systems.
If you wish to restore other file systems, you will need to modify the code. This script can be run
multiple times, but really only needs to be run once unless you change your hard disk
configuration.

Assuming you have a single hard disk on device /dev/hda, getdiskinfo will create the following
files:

partition.hda
This file contains the shell commands to repartition your hard disk drive /dev/hda to the
current state. If you have additional drives (e.g. /dev/hdc), you will find one of these files
for each drive. DO NOT EXECUTE THIS SCRIPT UNLESS YOU WANT YOUR
HARD DISK REPARTITIONED

format.hda
This file contains the shell commands that will format each of the partitions on your hard
drive. It knows about ext2, ext3, and swap partitions. All other partitions, you must
manually format. It is recommended that any Microsoft partitions be partitioned with
Microsoft's format command rather than using Unix tools. DO NOT EXECUTE THIS
SCRIPT UNLESS YOU WANT YOUR HARD DISK REFORMATTED

mount_drives
This script will mount all ext2 and ext3 drives that were previously mounted. They will
be mounted on
/mnt/drive/. This is used just before running the statically linked Bacula so that it can
access your drives for the restore.

restore_bacula
This script will restore the File daemon from the Bacula Rescue disk. Building the
Bacula Rescue disk will be described later. This will provide your emergency boot
environment with a Bacula file daemon. Note, this is a special statically linked version of
the file daemon (i.e. it does not need or use shared libraries).

start_network
This script will start your network using the simplest possible commands. You will need
to verify that the IP address used in this script is correct. In addition, if you have several
ethernet cards, you may need to make other modifications to this script.

sfdisk
This is the program that will repartition your hard disk, and it is normally found in
/sbin/sfdisk. It is placed in this directory so that it will be included on the rescue disk as
it is not normally available with all emergency boot environments.

sfdisk.gz
This is the version of sfdisk that works with tomsrtbt. The standard sfdisk described
above will not run under tomsrtbt.

Bacula Storage Management System

Emergency Boot Disk 184

The getdiskinfo program (actually a shell script) will also create a subdirectory named diskinfo,
which contains the following files:

df.bsi
disks.bsi
fstab.bsi
ifconfig.bsi
mount.bsi
mount.ext2.bsi
mount.ext3.bsi
mtab.bsi
route.bsi
sfdisk.disks.bsi
sfdisk.hda.bsi
sfdisk.make.hda.bsi

Each of these files contains some important piece of information (sometimes redundant) about
your hard disk setup or your network. Normally, you will not need this information, but it will be
written to the Bacula Rescue disk just in case. Since it is normally not used, we will leave it to
you to examine those files at your leisure.

Building a Static File Daemon

The second of the three steps in creating your Bacula Rescue disk is to build a static version of
the File daemon. Do so by either configuring Bacula as follows or by allowing the
make_rescue_disk script described below make it for you:

cd <bacula−src>
./configure <normal−options> −−enable−static−fd
make
cd src/filed
strip bacula−fd
cp bacula−fd ../../rescue/linux
cp bacula−fd.conf ../../rescue/linux

Finally, in <bacula−src>/rescue/linux, ensure that the WorkingDirectory and PIDDirectory both
point to reasonable locations on a stripped down system. If you are using tomsrtbt you will also
want to replace machine names with IP addresses since there is no resolver running. With the
Linux Rescue disk, network address mapping seems to work. Don't forget that at the time this
version of the Bacula File daemon runs, your file system will not be restored. In my
bacula−fd.conf, I use /var/working.

Writing the Bacula Rescue Floppy

When you have everything you need (output of getdiskinfo, Bacula File daemon, ...), you create
your rescue floppy by putting a blank tape into your floppy disk drive and entering:

su
./make_rescue_disk

This script will reformat the floppy and write everything in the current directory and all files in
the diskinfo directory to the floppy. If you supply the appropriate command line options, it will
also build a static version of the Bacula file daemon and copy it along with the configuration file
to the disk. Also using a command line option, you can make it write a compressed tar file

Bacula Storage Management System

Building a Static File Daemon 185

containing all the files whose names are in backup.etc.list to the floppy. The list as provided
contains names of files in /etc that you might need in a disaster situation. It is not needed, but in
some cases such as a complex network setup, you may find it useful.

Options for make_rescue_disk

The following command line options are available for the make_rescue_disk script:

Usage: make_rescue_disk
 −h, −−help print this message
 −−make−static−bacula make static File daemon and add to diskette
 −−copy−static−bacula copy static File daemon to diskette
 −−copy−etc−files copy files in etc list to diskette

Briefly the options are:

−−make−static−bacula
If this option is specified, the script will assume that you have already configured and
built Bacula. It will then proceed to build a statically linked version and copy it along
with bacula−fd.conf to the current directory, then write it to the rescue disk.

−−copy−static−bacula,/dt>
If this option is given, the script will assume that you already have a copy of the
statically linked Bacula in the current directory named bacula−fd as well as the
configuration script. They will then be written to the rescue disk.

−−copy−etc−files
If this option is specified, the script will tar the files in backup.etc.list and write them to
the rescue disk.

Please examine the contents of the rescue floppy to ensure that it has everything you want and
need. If not modify the scripts as necessary and re−run it until it is correct.

Now that you have both a system boot floppy and a Bacula Rescue floppy, assuming you have a
full backup of your system made by Bacula, you are ready to handle nearly any kind of
emergency restoration situation.

Restoring Your System

Now, let's assume that your hard disk has just died and that you have replaced it with an new
identical drive. In addition, we assume that you have:

A recent Bacula backup (Full plus Incrementals)1.
An emergency boot floppy (preferably tomsrtbt)2.
A Bacula Rescue Disk3.
Your Bacula Director, Catalog, and Storage daemon running on another machine on your
local network.

4.

This is a relatively simple case, and later in this chapter, as time permits, we will discuss how
you might recover from a situation where the machine that crashes is your main Bacula server
(i.e. has the Director, the Catalog, and the Storage daemon).

You will take the following steps to get your system back up and running:

Bacula Storage Management System

Options for make_rescue_disk 186

Boot with your Emergency Floppy1.
Mount your Bacula Rescue floppy2.
Start the Network (local network)3.
Re−partition your hard disk(s) as it was before4.
Re−format your partitions5.
Restore the Bacula File daemon (static version)6.
Perform a Bacula restore of all your files7.
Re−install your boot loader8.
Reboot9.

Now for the details ...

Boot with your Emergency Floppy

First you will boot with your emergency floppy. If you use the Installation floppy described
above, when you get to the boot prompt:

boot:

you enter linux rescue.

If you are booting from tomsrtbt simply enter the default responses.

When your machine finishes booting, you should be at the command prompt possibly with your
hard disk mounted on /mount/sysimage (Linux emergency only). To see what is actually
mounted, use:

df

Mount your Bacula Rescue Floppy

Make sure that the mount point /mnt/floppy exists. If not, enter:

mkdir −p /mnt/floppy

the mount your Bacula Rescue disk and cd to it with:

mount /dev/fd0 /mnt/floppy
cd /mnt/floppy

To simplify running the scripts make sure the current directory is on your path by:

PATH=$PATH:.

Start the Network

At this point, you should bring up your network. Normally, this is quite simple and requires just a
few commands. To simplify your task, we have created a script that should work in most cases
by typing:

./start_network

Bacula Storage Management System

Boot with your Emergency Floppy 187

You can test it by pinging another machine, or pinging your broken machine machine from
another machine. Do not proceed until your network is up.

Unmount Your Hard Disk (if mounted)

When you are sure you want to repartition your disk, normally, if your disk was damaged or if
you are using tomsrtbt your hard disk will not be mounted. However, if it is you must first
unmount it so that it is not in use. Do so by entering df and then enter the correct commands to
unmount the disks. For example:

umount /mnt/sysimage/boot
umount /mnt/sysimage/usr
umount /mnt/sysimage/proc
umount /mnt/sysimage/

where you explicitly unmount (umount) each sysimage partition and finally, the last one being
the root. Do another df command to be sure you successfully unmount all the sysimage
partitions.

This is necessary because sfdisk will refuse to partition a disk that is currently mounted. As
mentioned, this should never be necessary with tomsrtbt.

Partition Your Hard Disk(s)

If you are using tomsrtbt, you will need to do the following steps to get the correct sfdisk:

rm −f sfdisk
bzip2 −d sfdisk.bz2

Do not do the above steps if you are using a standard Linux boot disk.

Then proceed with partitioning your hard disk by:

./partition.hda

If you have multiple disks, do the same for each of them. For SCSI disks, the repartition script
will be named: partition.sda. If the script complains about the disk being in use, simply go back
and redo the df command and umount commands until you no longer have your hard disk
mounted. Note, in many cases, if your hard disk was seriously damaged or a new one installed, it
will not automatically be mounted. If it is mounted, it is because the emergency kernel found one
or more possibly valid partitions.

If for some reason this procedure does not work, you can use the information in partition.hda to
re−partition your disks by hand using fdisk.

Format Your Hard Disk(s)

After partitioning your disk, you must format it appropriately. The formatting script will put back
swap partitions, normal Unix partitions (ext2) and journaled partitions (ext3). Do so by entering
for each disk:

./format.hda

Bacula Storage Management System

Unmount Your Hard Disk (if mounted) 188

The format script will ask you if you want a block check done. We recommend to answer yes,
but realize that for very large disks this can take hours.

Mount the Newly Formatted Disks

Once the disks are partitioned and formatted, you can remount them with the mount_drives
script. All your drives must be mounted for Bacula to be able to access them. Run the script as
follows:

./mount_drives
df

The df will tell you if the drives are mounted. If not, re−run the script again. It isn't always easy
to figure out and create the mount points and the mounts in the proper order, so repeating the
./mount_drives command will not cause any harm and will most likely work the second time. If
not, correct it by hand before continuing.

Unmount the CDROM

Next, if you are using the Red Hat installation disk, unmount the CDROM drive by doing:

umount /mnt/cdrom

This is not necessary if you are running tomsrtbt. In doing this, I find it is always busy, and I
haven't figured out how to unmount it (Linux boot only).

Restore and Start the File Daemon

Now, change (cd) to some directory where you want to put the image of the Bacula File daemon.
I use the tmp directory my hard disk (mounted as /mnt/disk/tmp) because it is easy. Then install
into the current directory Bacula by running the restore_bacula script from the floppy drive. For
example:

cd /mnt/disk
mkdir −p /mnt/disk/tmp
mkdir −p /mnt/disk/tmp/working
/mnt/floppy/restore_bacula
ls −l

Make sure bacula−fd and bacula−fd.conf are both there.

Edit the Bacula configuration file, create the working/pid/subsys directory if you haven't already
done so above, and start Bacula by entering:

chroot /mnt/disk /tmp/bacula−fd −c /tmp/bacula−fd.conf

The above command starts the Bacula File daemon with your the proper root disk location (i.e.
/mnt/disk/tmp. If Bacula does not start correct the problem and start it. You can check if it is
running by entering:

ps fax

Bacula Storage Management System

Mount the Newly Formatted Disks 189

You can kill Bacula by entering:

kill −TERM <pid>

where pid is the first number printed in front of the first occurrence of bacula−fd in the ps fax
command.

Now, you should be able to use another computer with Bacula installed to check the status by
entering:

status client=xxxx

into the Console program, where xxxx is the name of the client you are restoring.

One common problem is that your bacula−fd.conf may contain machine addresses that are not
properly resolved on this stripped down system because it is not running DNS. In that case, be
prepared to edit bacula−fd.conf to replace the name of the Director's machine with its IP
address. Or better yet, do this before building the Bacula rescue disk.

Restoring using the RedHat Installation Disk

Suppose your system was damaged for one reason or another, so that the hard disk and the
partitioning and much of the filesystems are intact, but you want to do a full restore. If you have
booted into your system with the RedHat Installation Disk by specifying linux rescue at the
boot: prompt, you will find yourself in a shell command with your disks already mounted (if it
was possible) in /mnt/sysimage. In this case, you can do much like you did above to restore your
system:

cd /mnt/sysimage/tmp
mkdir −p /mnt/sysimage/tmp/working
/mnt/floppy/restore_bacula
ls −l

Make sure that bacula−fd and bacula−fd.conf are both in the current directory and that the
directory names in the bacula−fd.conf correctly point to the appropriate directories. Then start
Bacula with:

chroot /mnt/sysimage /tmp/bacula−fd −c /tmp/bacula−fd.conf

Restore Your Files

On the computer that is running the Director, you now run a restore command and select the
files to be restored (normally everything), but before starting the restore, there is one final change
you must make using the mod option. You must change the Where directory to be the root by
using the mod option just before running the job and selecting Where. Set it to:

/

then run the restore.

You might be tempted to avoid using chroot and running Bacula directly and then using a
Where to specify a destination of /mnt/disk. This is possible, however, the current version of

Bacula Storage Management System

Restoring using the RedHat Installation Disk 190

Bacula always restores files to the new location, and thus any soft links that have been specified
with absolute paths will end up with /mnt/disk prefixed to them. In general this is not fatal to
getting your system running, but be aware that you will have to fix these links if you do not use
chroot.

Final Step

At this point, the restore should have finished with no errors, and all your files will be restored.
One last task remains and that is to write a new boot sector so that your machine will boot. For
lilo, you enter the following command:

run_lilo

If you are using grub instead of lilo, you must enter the following:

run_grub

Note, I've had quite a number of problems with grub because it is rather complicated and not
designed to install easily under a simplified system. So, if you experience errors or end up
unexpectedly in a chroot shell, simply exit back to the normal shell and type in the appropriate
commands from the run_grub script by hand until you get it to install.

Reboot

Reboot your machine by simply entering exit until you get to the main prompt then enter ctl−d.

If everything went well, you should now be back up and running. If not, re−insert the emergency
boot floppy, boot, and figure out what is wrong.

At this point, you will probably want to remove the temporary copy of Bacula that you installed.
Do so with:

rm −f /bacula−fd /bacula−fd.conf
rm −rf /working

Problems or Bugs

Since every flavor and every release of Linux is different, there are likely to be some small
difficulties with the scripts, so please be prepared to edit them in a minimal environment. A
rudimentary knowledge of vi is very useful. Also, these scripts do not do everything. You will
need to reformat Windows partitions by hand, for example.

Getting the boot loader back can be a problem if you are using grub because it is so complicated.
If all else fails, reboot your system from your floppy but using the restored disk image, then
proceed to a reinstallation of grub (looking at the run−grub script can help). By contrast, lilo is a
piece of cake.

Bugs

When performing the bare metal recovery using the Red Hat emergency boot disk (actually the
installation boot disk), I was never able to release the cdrom, and when the system came up

Bacula Storage Management System

Final Step 191

/mnt/cdrom was soft linked to /mnt/disk/dev/hdd, which is not correct. I fixed this in each case
by deleting and simply remaking it with mkdir −p /mnt/cdrom.

tomsrtbt

This is a single floppy (1.722Meg) that really has A LOT of software. For example, by default
(version 2.0.103) you get:

AHA152X AHA1542 AIC7XXX BUSLOGIC DAC960 DEC_ELCP(TULIP) EATA
EEXPRESS/PRO/PRO100 EL2 EL3 EXT2 EXT3 FAT FD IDE−CD/DISK/TAPE IMM
INITRD ISO9660 JOLIET LOOP MATH_EMULATION MINIX MSDOS NCR53C8XX
NE2000 NFS NTFS PARPORT PCINE2K PCNET32 PLIP PPA RTL8139 SD
SERIAL/_CONSOLE SLIP SMC_ULTRA SR ST VFAT VID_SELECT VORTEX WD80x3
.exrc 3c589_cs agetty ash badblocks basename boot.b buildit.s busybox bz2bzImage bzip2
cardmgr cardmgr.pid cat chain.b chattr chgrp chmod chown chroot clear clone.s cmp common
config cp cpio cs cut date dd dd−lfs debugfs ddate df dhcpcd−− dirname dmesg domainname ds
du dumpe2fs e2fsck echo egrep elvis ex false fdflush fdformat fdisk filesize find findsuper fmt
fstab grep group gunzip gzip halt head hexdump hexedit host.conf hostname hosts httpd i82365
ifconfig ile init inittab insmod install.s issue kernel key.lst kill killall killall5 ld ld−linux length
less libc libcom_err libe2p libext2fs libtermcap libuuid lilo lilo.conf ln loadkmap login ls lsattr
lsmod lua luasocket man map md5sum miterm mkdir mkdosfs mke2fs mkfifo mkfs.minix mknod
mkswap more more.help mount mt mtab mv nc necho network networks nmclan_cs nslookup
passwd pax pcmcia_core pcnet_cs pidof ping poweroff printf profile protocols ps pwd rc.0 rc.S
rc.custom rc.custom.gz rc.pcmcia reboot rescuept reset resolv.conf rm rmdir rmmod route rsh
rshd script sed serial serial_cs services setserial settings.s sh shared slattach sleep sln sort split
stab strings swapoff swapon sync tail tar tcic tee telnet telnetd termcap test tomshexd
tomsrtbt.FAQ touch traceroute true tune2fs umount undeb−− unpack.s unrpm−− update utmp vi
vi.help view watch wc wget which xargs xirc2ps_cs yecho yes zcat

In addition, at Tom's Web Site, you can find a lot of additional kernel drivers and other software
(such as sdisk, which is used by Bacula.

Building his floppy is a piece of cake. Simply download his .tar.gz file then:

− detar the .tar.gz archive
− become root
− cd to the tomsrtbt−<version> directory
− load a blank floppy with no bad sectors
− ./install.s

Solaris Bare Metal Recovery

The same basic techniques as described above apply to Solaris:

the same restrictions as those given for Linux apply•
you will need to create a Bacula Rescue disk•

However, during the recovery phase, the boot and disk preparation procedures are different:

there is no need to create an emergency boot disk since it is an integrated part of the
boot.

•

Bacula Storage Management System

tomsrtbt 192

http://www.toms.net/rb

you must partition and format your hard disk by hand following manual procedures as
described in W. Curtis Preston's book "Unix Backup Recovery"

•

Once the disk is partitioned, formatted and mounted, you can continue with bringing up the
network and reloading Bacula.

Preparing Solaris Before a Disaster

As mentioned above, before a disaster strikes, you should prepare the information needed in the
case of problems. To do so, in the rescue/solaris subdirectory enter:

su
./getdiskinfo
./make_rescue_disk

The getdiskinfo script will, as in the case of Linux described above, create a subdirectory
diskinfo containing the output from several system utilities. In addition, it will contain the output
from the SysAudit program as described in Curtis Preston's book. This file diskinfo/sysaudit.bsi
will contain the disk partitioning information that will allow you to manually follow the
procedures in the "Unix Backup Recovery" book to repartition and format your hard disk. In
addition, the getdiskinfo script will create a start_network script.

Once you have your your disks repartitioned and formatted, do the following:

Start Your Network with the start_network script•
Restore the Bacula File daemon as documented above•
Perform a Bacula restore of all your files using the same commands as described above
for Linux

•

Re−install your boot loader using the instructions outlined in the "Unix Backup
Recovery" book using installboot

•

Recovering a Server

Above, we considered how to recover a client machine where a valid Bacula server was running
on another machine. However, what happens if your server goes down and you no longer have a
running Director, Catalog, or Storage daemon? There are several solutions:

Bring up static versions of your Director, Catalog, and Storage daemon.1.
Move your server to another machine.2.

The first option, is very difficult because it requires you to have created a static version of the
Director and the Storage daemon as well as the Catalog. If the Catalog uses MySQL, this may or
may not be possible. In addition, to loading all these programs on a bare system (quite possible),
you will need to make sure you have a valid driver for your tape drive.

The second suggestion is probably a much simpler solution, and one I have done myself. To do
so, you might want to consider the following steps:

If you are using MySQL, configure, build and install MySQL from source (or user rpms)
on your new system.

•

Bacula Storage Management System

Preparing Solaris Before a Disaster 193

Load the Bacula source code onto your new system, configure, install it, and create the
Bacula database.

•

If you have a valid saved Bootstrap file as created for your damaged machine with
WriteBootstrap, use it to restore the files to the damaged machine, where you have
loaded a Bacula File daemon using the Bacula Rescue disk).

•

If you have the Bootstrap file, you should now be back up and running, if you do not
have a Bootstrap file, continue with the suggestions below.

•

Using bscan scan the last set of backup tapes into your MySQL or SQLite database.•
Start Bacula, and using the Console restore command, restore the last valid copy of the
Bacula database and the the Bacula configuration files.

•

Move the database to the correct location.•
Start and restart Bacula, and with the full database using the Console restore command,
restore all the files on the damaged machine, where you have loaded a Bacula File
daemon using the Bacula Rescue disk.

•

Bugs and Other Considerations

Directory Modification and Access Times are Modified

When Bacula restores a directory, it first must create the directory, then it populates the directory
with its files and subdirectories. The act of creating the files and subdirectories updates both the
modification and access times associated with the directory itself. As a consequence, all
modification and access times of all directories will be updated to the time of the restore. This
could be "corrected" by saving a list of all directories created during the restore, then when all
files are restored, visit each of those directories and reset their modification and access times.
This could possibly fail due to an out of memory condition −− don't forget that during a bare
metal recovery, there is generally no swap file active.

I'm not too worried about this, and will probably provide restoration of exact directory
modification times in a future release. If anyone feels this is more important that I do, please let
me know.

Strange Bootstrap Files

If any of you look closely at the bootstrap file that is produced and used for the restore (I sure
do), you will probably notice that the FileIndex item does not include all the files saved to the
tape. This is because in some instances there are duplicates (especially in the case of an
Incremental save), and in such circumstances, Bacula restores only the last of multiple copies of
a file or directory.

Disaster Recovery of Win32 Systems

Bacula does not yet really work completely well on Win32 systems, particularly WinXP and
Win2K because of permission problems. However, Ludovic Strappazon has suggested an
interesting way to backup and restore complete Win32 partitions. Simply boot your Win32
system with a Linux Rescue disk as described above for Linux, install a statically linked Bacula,
and backup any of the raw partitions you want. Then to restore the system, you simply restore the
raw partition or partitions. Here is the email that Ludovic recently sent on that subject:

I've just finished testing my brand new cd LFS/Bacula

Bacula Storage Management System

Bugs and Other Considerations 194

with a raw Bacula backup and restore of my portable.

I can't resist sending you the results: look at the rates !!!

hunt−dir: Start Backup JobId 100, Job=HuntBackup.2003−04−17_12.58.26
hunt−dir: Bacula 1.30 (14Apr03): 17−Apr−2003 13:14
JobId: 100
Job: HuntBackup.2003−04−17_12.58.26
FileSet: RawPartition
Backup Level: Full
Client: sauvegarde−fd
Start time: 17−Apr−2003 12:58
End time: 17−Apr−2003 13:14
Files Written: 1
Bytes Written: 10,058,586,272
Rate: 10734.9 KB/s
Software Compression: None
Volume names(s): 000103
Volume Session Id: 2
Volume Session Time: 1050576790
Last Volume Bytes: 10,080,883,520
FD termination status: OK
SD termination status: OK
Termination: Backup OK

hunt−dir: Begin pruning Jobs.
hunt−dir: No Jobs found to prune.
hunt−dir: Begin pruning Files.
hunt−dir: No Files found to prune.
hunt−dir: End auto prune.

hunt−dir: Start Restore Job RestoreFilesHunt.2003−04−17_13.21.44
hunt−sd: Forward spacing to file 1.
hunt−dir: Bacula 1.30 (14Apr03): 17−Apr−2003 13:54
JobId: 101
Job: RestoreFilesHunt.2003−04−17_13.21.44
Client: sauvegarde−fd
Start time: 17−Apr−2003 13:21
End time: 17−Apr−2003 13:54
Files Restored: 1
Bytes Restored: 10,056,130,560
Rate: 5073.7 KB/s
FD termination status: OK
Termination: Restore OK

hunt−dir: Begin pruning Jobs.
hunt−dir: No Jobs found to prune.
hunt−dir: Begin pruning Files.
hunt−dir: No Files found to prune.
hunt−dir: End auto prune.

Restoring to a Running System

If for some reason you want to do a Full restore to a system that has a working kernel, you will
need to take care not to overwrite the following files:

/etc/grub.conf
/etc/X11/Conf

Bacula Storage Management System

Restoring to a Running System 195

/etc/fstab
/etc/mtab
/lib/modules
/usr/modules
/usr/X11R6
/etc/modules.conf

Additional Resources

Many thanks to Charles Curley who wrote Linux Complete Backup and Recovery HOWTO for
the The Linux Documentation Project. This is an excellent document on how to do Bare Metal
Recovery on Linux systems, and it was this document that made me realize that Bacula could do
the same thing.

You can find quite a few additional resources, both commercial and free at Storage Mountain,
formerly known as Backup Central.

And finally, the O'Reilly book, "Unix Backup Recovery" by W. Curtis Preston covers virtually
every backup and recovery topic including bare metal recovery for a large range of Unix
systems.

The Bacula Console Restore Command Index Catalog Maintenance

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 14

Backup Strategies Index Tips and Suggestions

Autochangers −− General

Beginning with version 1.23, Bacula provides autochanger support for reading and writing tapes.
In order to work with an autochanger, Bacula requires three things, each of which is explained in
more detail after this list:

A script that actually controls the autochanger according to commands sent by Bacula.
We furnish such a script that works with mtx found in the depkgs distribution.

•

That each Volume (tape) to be used must have a Slot number assigned to it so that
Bacula knows where the Volume is in the autochanger. This is generally done with the
label command. See below for more details.

•

Modifications to your Storage daemon's Device configuration resource to identify that
the device is a changer, as well as a few other parameters.

•

Bacula Storage Management System

Additional Resources 196

http://www.tldp.org/HOWTO/Linux-Complete-Backup-and-Recovery-HOWTO/index.html
http://www.tldp.org/
http://www.backupcentral.com
http://www.bacula.org/

Optionally, you can modify your Storage resource definition in the Director's
configuration file so that you are automatically prompted for the Slot when labeling a
Volume.

•

Bacula uses its own mtx−changer script to interface with a a program that actually does the tape
changing. Thus in principle, mtx−changer can be adapted to function with any autochanger
program. The current version of mtx−changer works with the mtx program.

As of version 1.30, Bacula supports autochangers with barcode readers. This support includes
two new Console commands: label barcodes and update slots. For more details on these
commands, see the "Barcode Support" section below.

Current Bacula autochanger support does not include cleaning, stackers, or silos. However,
under certain conditions, you may be able to make Bacula work with stackers (gravity feed and
such).

Example Scripts

Please read the sections below so that you understand how autochangers work with Bacula.
Although we supply a default mtx−changer script, your autochanger may require some
additional changes. If you want to see examples of configuration files and scripts, please look in
the <bacula−src>/examples/devices directory where you will find an example
HP−autoloader.conf Bacula Device resource, and several mtx−changer scripts that have been
modified to work with different autochangers.

Slots

Some autochangers have more than one read/write device (drive). The current implementation,
assumes the autochanger has only one device. To properly address autochangers, Bacula must
know which Volume is in each slot of the autochanger. Slots are where the changer cartridges
reside when not loaded into the drive. Bacula numbers these slots from one to the number of
cartridges contained in the autochanger.

For each Volume in your changer, you will, using the Console program, assign a slot. This
information is kept in Bacula's media database along with the other data for the volume. If no
slot is given, or the slot is set to zero, Bacula will not attempt to use the autochanger even if all
the necessary configuration records are present.

Device Configuration Records

Configuration of autochangers within Bacula is done in the Device resource of the Storage
daemon. Four records: Autochanger, Changer Device, Changer Command, and Maximum
Changer Wait control how Bacula uses the autochanger.

These four records, permitted in Device resources, are described in detail below:

Autochanger = Yes|No
The Autochanger record specifies that the current device is or is not an autochanger.
The default is no.

Bacula Storage Management System

Example Scripts 197

Changer Device = <device−name>
In addition to the Archive Device name, you must specify a Changer Device name. This
is because most autochangers are controlled through a different device than is used for
reading and writing the cartridges. For example, on Linux, one normally uses the generic
SCSI interface for controlling the autochanger, but the standard SCSI interface for
reading and writing the tapes. On Linux, for the Archive Device = /dev/nst0, you would
typically have Changer Device = /dev/sg0. Note, some of the more advanced
autochangers will locate the changer device on /dev/sg1. Such devices typically have
several drives and a large number of tapes.

Changer Command = <command>
This record is used to specify the external program to call and what arguments to pass to
it. The command is assumed to be a standard program or shell script that can be executed
by the operating system. This command is invoked each time that Bacula wishes to
manipulate the autochanger. The following substitutions are made in the command
before it is sent to the operating system for execution:
 %% = %
 %a = archive device name
 %c = changer device name
 %f = Client's name
 %j = Job name
 %o = command (loaded, load, or unload)
 %s = Slot base 0
 %S = Slot base 1
 %v = Volume name

An actual example for using mtx with the mtx−changer script (part of the Bacula
distribution) is:

 Changer Command = "/etc/bacula/mtx−changer %c %o %S %a"

Where you will need to adapt the /usr/bin to be the actual path on your system. Details
of the three commands currently used by Bacula (loaded, load, unload) as well as the
output expected by Bacula are give in the Bacula Autochanger Interface section
below.

Maximum Changer Wait = <time>
This record is used to define the maximum amount of time that Bacula will wait for an
autoloader to respond to a command (e.g. load). The default is set to 120 seconds. If you
have a slow autoloader you may want to set it longer.
If the autoloader program fails to respond in this time, it will be killed and Bacula will
request operator intervention.

An Example Configuration File

The following Device resource implements an autochanger:

Device {
 Name = "Autochanger"
 Media Type = DDS−4
 Archive Device = /dev/nst0 # Normal archive device
 Changer Device = /dev/sg0 # Generic SCSI device name
 Changer Command = "/etc/bacula/mtx−changer %c %o %S %a"
 Autochanger = yes

Bacula Storage Management System

An Example Configuration File 198

 LabelMedia = no; # lets Bacula label unlabeled media
 AutomaticMount = yes; # when device opened, read it
 AlwaysOpen = yes;
 Mount Anonymous Volumes = no; # Require Volumes in Catalog order
}

where you will adapt the Archive Device, the Changer Device, and the path to the Changer
Command to correspond to the values used on your system.

The above Device resource will work equally well for any standard tape drive (with device name
/dev/nst0) since the extra autochanger commands will not be used unless a slot has been
specified in the catalog record for the Volume to be used. See below for more details on the slot.

Specifying Slots When Labeling

If you add an Autochanger = yes record to the Storage resource in your Director's configuration
file, the Bacula Console will automatically prompt you for the slot number when you add or
label tapes for that Storage device. You must also set Autochanger = yes in the Device resource
as we have described above in order for the autochanger to be used. Please see the Storage
Resource in the Director's chapter and the Device Resource in the Storage daemon chapter for
more details on these records.

Thus all stages of dealing with tapes can be totally automated. It is also possible to set or change
the Slot using the update command in the Console and selecting Volume Parameters to update.

Even though all the above configuration statements are specified and correct, Bacula will
attempt to access the autochanger only if a slot is non−zero in the catalog Volume record (with
the Volume name).

FreeBSD Issues

If you are having problems on FreeBSD when Bacula tries to select a tape, and the message is
Device not configured, this is because FreeBSD has made the tape device /dev/nsa1 disappear
when there is no tape mounted in the autochanger slot. As a consquence, Bacula is unable to
open the device. The solution to the problem is to make sure that some tape is loaded into the
tape drive before starting Bacula.

Testing the Autochanger and Adapting Your
mtx−changer Script

Before attempting to use the autochanger with Bacula, it is preferable to "hand−test" that the
changer works. To do so, we suggest you do the following commands (assuming that the
mtx−changer script is installed in /usr/bin/bacula/mtx−changer:

Make sure Bacula is not running.
/etc/bacula/mtx−changer /dev/sg0 list

This command should print "1 2 3 4 5 6" or one number for each slot that is occupied in
your changer. If an error message is printed, you must resolve the problem (e.g. try a
different device name if /dev/sg0 is incorrect. The more sophisticated autochangers will
sometimes use use /dev/sg1 to control /dev/nst0).

Bacula Storage Management System

Specifying Slots When Labeling 199

/etc/bacula/mtx−changer /dev/sg0 unload
If a tape is loaded, this should cause it to be unloaded.

/etc/bacula/mtx−changer /dev/sg0 load 3
Assuming you have a tape in slot 3, it will be loaded into the read slot (0).

/etc/bacula/mtx−changer /dev/sg0 loaded
It should print "3"

/etc/bacula/mtx−changer /dev/sg0 unload

Once all the above commands work correctly, assuming that you have the right Changer
Command in your configuration, Bacula should be able to operate the changer. The only
remaining area of problems will be if your autoloader needs some time to get the tape loaded
after issuing the command. After the mtx−changer script returns, Bacula will immediately
rewind and read the tape. If Bacula printers rewind errors after a tape change, you will probably
need to insert a sleep 20 after the mtx command, but be careful to exit the script with a zero
status by adding exit 0 after any additional commands you add to the script. This is because
Bacula checks the return status of the script, which should be zero if all went well.

You can test whether or not you need a sleep by putting the following commands into a file and
running it as a script:

#!/bin/sh
/etc/bacula/mtx−changer /dev/sg0 unload
/etc/bacula/mtx−changer /dev/sg0 load 3
mt −f /dev/st0 rewind
mt −f /dev/st0 weof

If the above script runs, you probably have no timing problems. If it does not run, start by putting
a sleep 30 or possibly a sleep 60 in the the script just after the mtx−changer load command. If
that works, then you should move the sleep into the actual mtx−changer script so that it will be
effective when Bacula runs.

A second problem that typically comes up with some autochangers is that they need to have the
cartridge ejected before it can be removed. If this is the case, the load 3 will never succeed
regardless of how long you wait. If this seems to be your problem, you can insert an eject just
after the unload so that the script looks like:

#!/bin/sh
/etc/bacula/mtx−changer /dev/sg0 unload
mt −f /dev/st0 offline
/etc/bacula/mtx−changer /dev/sg0 load 3
mt −f /dev/st0 rewind
mt −f /dev/st0 weof

Obviously, if you need the offline command, you should move it into the mtx−changer script
ensuring that you save the status of the mtx command or always force an exit 0 from the script,
because Bacula checks the return status of the script.

As noted earlier, there are several scripts in <bacula−source>/examples/devices that implement
the above features, so they may be a help to you in getting your script to work.

Bacula Storage Management System

Specifying Slots When Labeling 200

Using the Autochanger

Lets assume that you have properly defined the necessary Storage daemon Device records, and
you have added the Autochanger = yes record to the Storage resource in your Director's
configuration file.

Now you fill your autochanger with say six blank tapes.

What do you do to make Bacula access those tapes?

One strategy is to prelabel each of the tapes. Do so by starting Bacula, then with the Console
program, enter the label command:

./console
Connecting to Director rufus:8101
1000 OK: rufus−dir Version: 1.26 (4 October 2002)
*label

it will then prints something like:

Using default Catalog name=BackupDB DB=bacula
The defined Storage resources are:
 1: Autochanger
 2: File
Select Storage resource (1−2): 1

I select the autochanger (1), and it prints:

Enter new Volume name: TestVolume1
Enter slot (0 for none): 1

where I entered TestVolume1 for the tape name, and slot 1 for the slot. It then asks:

Defined Pools:
 1: Default
 2: File
Select the Pool (1−2): 1

I select the Default pool. This will be automatically done if you only have a single pool, then
Bacula will proceed to unload any loaded volume, load the volume in slot 1 and label it. In this
example, nothing was in the drive, so it printed:

Connecting to Storage daemon Autochanger at localhost:9103 ...
Sending label command ...
3903 Issuing autochanger "load slot 1" command.
3000 OK label. Volume=TestVolume1 Device=/dev/nst0
Media record for Volume=TestVolume1 successfully created.
Requesting mount Autochanger ...
3001 Device /dev/nst0 is mounted with Volume TestVolume1
You have messages.
*

You may then proceed to label the other volumes. The messages will change slightly because
Bacula will unload the volume (just labeled TestVolume1) before loading the next volume to be

Bacula Storage Management System

Using the Autochanger 201

labeled.

Once all your Volumes are labeled, Bacula will automatically load them as they are needed.

To "see" how you have labeled your Volumes, simply enter the list volumes command from the
Console program, which should print something like the following:

*list volumes
Using default Catalog name=BackupDB DB=bacula
Defined Pools:
 1: Default
 2: File
Select the Pool (1−2): 1

+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−+−−−−−−+

| MediaId | VolName | MediaType | VolStatus | VolBytes | LstWritten | VolReten | Recyc | Slot |

+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−+−−−−−−+

| 1 | TestVol1 | DDS−4 | Append | 0 | 0 | 30672000 | 0 | 1 |

| 2 | TestVol2 | DDS−4 | Append | 0 | 0 | 30672000 | 0 | 2 |

| 3 | TestVol3 | DDS−4 | Append | 0 | 0 | 30672000 | 0 | 3 |

| ... |

+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−+−−−−−−+

Autochangers Known to Work with Bacula

I hesitate to call these "supported" autochangers because the only autochanger that I have in my
position and am able to test is the HP SureStore DAT40X6. All the other autochangers have been
reported to work by Bacula users. Note, in the Capacity/Slot column below, I quote the
Compressed capacity per tape (or Slot).

OS Manufacturer Media Model Slots Capacity/Slot

Linux HP DDS−4
SureStore
DAT−40X6

6 40GB

??? Sony ??? TLS−11000 8 ????

??? HP DLT A4853 DLT 30 40/70GB

??? Storagetek DLT Timberwolf DLT 6 40/70

SolarisSun 4mm DLT
Sun Desktop/Archive
Python 29279

4 20GB

Linux Adic
LTO−2,LTO−,
SDLT 320

Adic Scalar 24 24 100GB

Linux Tandberg DLT VI VS 640 8? 35/70GB

Linux
HP
(Compaq)

DLT VI Compaq TL−895
96+4
import/export

35/70GB

Bacula Storage Management System

Autochangers Known to Work with Bacula 202

In principle, if mtx will operate your changer correctly, then it is just a question of adapting the
mtx−changer script (or selecting one already adapted) for proper interfacing. You can find a list
of autochangers supported by mtx at the following link: http://mtx.badtux.net/compatibility.php.
The home page for the mtx project can be found at: http://mtx.badtux.net/.

Barcode Support

Bacula provides barcode support with two Console commands, label barcodes and update
slots.

The label barcodes will cause Bacula to read the barcodes of all the cassettes that are currently
installed in the magazine (cassette holder) using the mtx−changer list command. Each cassette
is mounted in turn and labeled with the same Volume name as the barcode.

The update slots command will first obtain the list of cassettes and their barcodes from
mtx−changer. Then it will find each volume in turn in the catalog database corresponding to to
the barcodes and set its Slot to correspond to the value just read. If the Volume is not in the
catalog, then nothing will be done. This command is useful for synchronizing Bacula with the
current magazine in case you have changed magazines or in case you have moved cassettes from
one slot to another.

The Cleaning Prefix statement can be used in the Pool resource to define a Volume name prefix,
which if it matches that of the Volume (barcode) will cause that Volume to be marked with a
VolStatus of Cleaning. This will prevent Bacula from attempting to write on the Volume.

Bacula Autochanger Interface

Bacula calls the autochanger script that you specify on the Changer Device statement. Normally
this script will be the mtx−changer script that we can provide, but it can in fact be any program.
The only requirements are that the "commands" that Bacula uses are loaded, load, unload and
list (slots may be used in the future). In addition, each of those commands must return the
information in the precise format as specified below:

− Currently the changer commands used are:
 loaded −− returns number of the slot that is loaded in
 the drive or 0 if the drive is empty.
 load −− loads a specified slot (note, some autochangers
 require a 30 second pause after this command) into
 the drive.
 unload −− unloads the device (returns cassette to its slot).
 list −− returns one line for each cassette in the autochanger
 in the format <slot>:<barcode>. Where
 the slot is the non−zero integer representing
 the slot number, and barcode is the barcode
 associated with the cassette if it exists and if you
 autoloader supports barcodes. Otherwise the barcode
 field is blank.

− Other changer commands defined but not yet used:
 slots −− returns total number of slots in the autochanger.

Bacula checks the exit status of the program called, and if it is zero, the data is accepted. If the
exit status is non−zero, Bacula ignores any information returned and treats the drive as if it is not

Bacula Storage Management System

Barcode Support 203

http://mtx.badtux.net/compatibility.php
http://mtx.badtux.net/

an autochanger.

Backup Strategies Index Tips and Suggestions

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 15

Using Autochangers Index Utility Programs

Bacula Storage Management System

Barcode Support 204

http://www.bacula.org/

Tips and Suggestions

Upgrading Bacula Versions

The first thing to do before upgrading from one version to another is to ensure that don't
overwrite your production (current) version of Bacula until you have tested that the new version
works.

If you have installed Bacula into a single directory, this is simple: simply make a copy of your
Bacula directory.

If you have done a more typical Unix installation where the binaries are placed in one directory
and the configuration files are placed in another, then the simplest way is to configure your new
Bacula to go into a single file.

Whatever your situation may be (one of the two just described), you should probably start with
the defaultconf script that can be found in the examples subdirectory. Copy this script to the
main Bacula directory, modify it as necessary (there should not need to be many modifications),
configure Bacula, build it, install it, then stop your production Bacula, copy all the *.conf files
from your production Bacula directory to the test Bacula directory, start the test version, and run
a few test backups. If all seems good, then you can proceed to install the new Bacula in place of
or possibly over the old Bacula.

When installing a new Bacula you need not worry about losing the changes you made to your
configuration files as the installation process will not overwrite them.

Getting Notified of Job Completion

One of the first things you should do is to ensure that you are being properly notified of the status
of each Job run by Bacula, or at a minimum of each Job that terminates with an error.

Until you are completely comfortable with Bacula, we recommend that you send an email to
yourself for each Job that is run. This is most easily accomplished by adding an email
notification address in the Messages resource of your Director's configuration file. An email is
automatically configured in the default configuration files, but you must ensure that the default
root address is replaced by your email address.

For examples of how I (Kern) configure my system, please take a look at the .conf files found in
the examples sub−directory. We recommend the following configuration (where you change the
paths and email address to correspond to your setup). Note, the mailcommand and
operatorcommand should be on a single line. They were split here for presentation:

Messages {
 Name = Standard
 mailcommand = "/home/bacula/bin/smtp −h localhost −f \"\(Bacula\) %r\"
 −s \"Bacula: %t %e of %c %l\" %r"
 operatorcommand = "/home/bacula/bin/smtp −h localhost −f \"\(Bacula\) %r\"
 −s \"Bacula: Intervention needed for %j\" %r"
 Mail = your−email−address = all, !skipped, !terminate
 append = "/home/bacula/bin/log" = all, !skipped, !terminate
 operator = your−email−address = mount

Tips and Suggestions 205

 console = all, !skipped, !saved
}

You will need to ensure that the /home/bacula/bin path on the mailcommand and the
operatorcommand lines points to your Bacula binary directory where the smtp program will be
installed. You will also want to ensure that the your−email−address is replaced by your email
address, and finally, you will also need to ensure that the /home/bacula/bin/log points to the file
where you want to log all messages.

With the above Messages resource, you will be notified by email of every Job that ran, all the
output will be appended to the log file you specify, all output will be directed to the console
program, and all mount messages will be emailed to you. Note, some messages will be sent to
multiple destinations.

The form of the mailcommand is a bit complicated, but it allows you to distinguish whether the
Job terminated in error or terminated normally. Please see the Mail Command section of the
Messages Resource chapter of this manual for the details of the substitution characters used
above.

Once you are totally comfortable with Bacula as I am, or if you have a large number of nightly
Jobs as I do (eight), you will probably want to change the Mail command to Mail On Error
which will generate an email message only if the Job terminates in error. If the Job terminates
normally, no email message will be sent, but the output will still be appended to the log file as
well as sent to the Console program.

Getting Email Notification to Work

The section above describes how to get email notification of job status. Occasionally, however,
users have problems receiving any email at all. In that case, the things to check are the following:

Ensure that you have a valid email address specified on your Mail record in the
Director's Messages resource. The email address should be fully qualified. Simply using
root generally will not work, rather you should use root@localhost or better yet your
full domain.

•

Ensure that you do not have a Mail record in the Storage daemon's or File daemon's
configuration files. The only record you should have is director:

•

 director = director−name = all

If all else fails, try replacing the mailcommand with•

 mailcommand = "mail −s test your−email@domain.com"

Once the above is working, assuming you want to use smtp, submit the desired smtp
command by hand and ensure that the email is delivered, then put that command into
Bacula. Small differences in things such as the parenthesis around the word Bacula can
make a big difference to some smtp programs. For example, you might start simply by
using:

•

 mailcommand = "/home/bacula/bin/smtp −f \"root@localhost\" %r"

Bacula Storage Management System

Getting Email Notification to Work 206

Getting Notified that Bacula is Running

If like me, you have setup Bacula so that email is sent only when a Job has errors, as described
in the previous section of this chapter, inevitably, one day, something will go wrong and Bacula
can stall. This could be because Bacula crashes, which is vary rare, or more likely the network
has caused Bacula to hang for some unknown reason.

To avoid this, you can use the RunAfterJob command in the Job resource to schedule a Job
nightly, or weekly that simply emails you a message saying that Bacula is still running. For
example, I have setup the following Job in my Director's configuration file:

Schedule {
 Name = "Watchdog"
 Run = Level=Full sun−sat at 6:05
}

Job {
 Name = "Watchdog"
 Type = Admin
 Client=Watchdog
 FileSet="Verify Set"
 Messages = Standard
 Storage = DLTDrive
 Pool = Default
 Schedule = "Watchdog"
 RunAfterJob = "/home/kern/bacula/bin/watchdog"
}

Client {
 Name = Watchdog
 Address = rufus
 FDPort = 9102
 Catalog = Verify
 Password = ""
 File Retention = 1d # 1 days
 Job Retention = 1m # 1 month
 AutoPrune = yes # Prune expired Jobs/Files
}

Where I established a schedule to run the Job nightly. The Job itself is type Admin which means
that it doesn't actually do anything, and I've defined a FileSet, Pool, Storage, and Client, all of
which are not really used (and probably don't need to be specified). The key aspect of this Job is
the command:

 RunAfterJob = "/home/kern/bacula/bin/watchdog"

which runs my "watchdog" script. You can put anything in the watchdog scrip. In my case, I like
to monitor the size of my catalog to be sure that Bacula is really pruning it. The following is my
watchdog script:

#!/bin/sh
cd /home/kern/mysql/var/bacula
du . * |
/home/kern/bacula/bin/smtp −f "\(Bacula\) abuse@whitehouse.com" −h mail.yyyy.com \

Bacula Storage Management System

Getting Notified that Bacula is Running 207

 −s "Bacula running" abuse@whitehouse.com

If you just wish to send yourself a message, you can do it with:

#!/bin/sh
cd /home/kern/mysql/var/bacula
/home/kern/bacula/bin/smtp −f "\(Bacula\) abuse@whitehouse.com" −h mail.yyyy.com \
 −s "Bacula running" abuse@whitehouse.com <<END−OF−DATA
Bacula is still running!!!
END−OF−DATA

Maintaining a Valid Bootstrap File

By using a WriteBootstrap record in each of your Director's Job resources, you can constantly
maintain a bootstrap file that will enable you to recover the state of your system as of the last
backup without having the Bacula catalog. This permits you to more easily recover from a
disaster that destroys your Bacula catalog.

When a Job resource has a WriteBootstrap record, Bacula will maintain the designated file
(normally on another system but mounted by NSF) with up to date information necessary to
restore your system. For example, in my Director's configuration file, I have the following
record:

 Write Bootstrap = "/mnt/deuter/files/backup/client−name.bsr"

where I replace client−name by the actual name of the client that is being backed up. Thus,
Bacula automatically maintains one file for each of my clients. The necessary bootstrap
information is appended to this file during each Incremental backup, and the file is totally
rewritten during each Full backup.

Note, one major disadvantage of writing to a NFS mounted volume as I do is that if the other
machine goes down, the OS will wait forever on the fopen() call that Bacula makes. As a
consequence, Bacula will completely stall until the machine exporting the NSF mounts comes
back up. If someone knows a way around this, please let me know.

If you are starting off in the middle of a cycle (i.e. with Incremental backups) rather than at the
beginning (with a Full backup), the bootstrap file will not be immediately valid as it must
always have the information from a Full backup as the first record. If you wish to synchronize
your bootstrap file immediately, you can do so by running a restore command for the client and
selecting a full restoration, but when the restore command asks for confirmation to run the
restore Job, you simply reply no, then copy the bootstrap file that was written to the location
specified on the Write Bootstrap record. The restore bootstrap file can be found in restore.bsr
in the working directory that you defined. In the example given below for the client rufus, my
input is shown in bold. Note, the JobId output has been partially truncated to fit on the page here:

(in the Console program)
*restore
First you select one or more JobIds that contain files
to be restored. You will be presented several methods
of specifying the JobIds. Then you will be allowed to
select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

Bacula Storage Management System

Maintaining a Valid Bootstrap File 208

 1: List last 20 Jobs run
 2: List Jobs where a given File is saved
 3: Enter list of JobIds to select
 4: Enter SQL list command
 5: Select the most recent backup for a client
 6: Cancel
Select item: (1−6): 5
The defined Client resources are:
 1: Minimatou
 2: Rufus
 3: Timmy
Select Client (File daemon) resource (1−3): 2
The defined FileSet resources are:
 1: Kerns Files
Item 1 selected automatically.

+−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+

| JobId | Level | JobFiles | StartTime | VolName | StrtFil | VolSesId | VolSesTime |

+−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+

| 2 | F | 84 | ... | test1 | 0 | 1 | 1035645259 |

+−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+

You have selected the following JobId: 2
Building directory tree for JobId 2 ...

The defined Storage resources are:
 1: File
Item 1 selected automatically.

You are now entering file selection mode where you add and
remove files to be restored. All files are initially added.
Enter "done" to leave this mode.

cwd is: /
$ done

84 files selected to restore.

Run Restore job
JobName: kernsrestore
Bootstrap: /home/kern/bacula/working/restore.bsr
Where: /tmp/bacula−restores
FileSet: Kerns Files
Client: Rufus
Storage: File
JobId: *None*
OK to run? (yes/mod/no): no
quit

(in a shell window)
cp ../working/restore.bsr /mnt/deuter/files/backup/rufus.bsr

Rejected Volumes After a Crash

Bacula keeps the number of files on each Volume in its Catalog database so that before
appending to a tape, it can verify that the number of files are correct, and thus prevent
overwriting valid data. If the Director or the Storage daemon crashes before the job has
completed, the tape will contain one more file than is noted in the Catalog, and the next time you
attempt to use the same Volume, Bacula will reject it due to a mismatch between the physical

Bacula Storage Management System

Rejected Volumes After a Crash 209

tape and the catalog.

The easiest solution to this problem is to label a new tape and start fresh. If you wish to continue
appending to the current tape, you can do so by using the update command in the console
program to change the Volume Files entry in the catalog. A typical sequence of events would go
like the following:

− Bacula crashes
− You restart Bacula

Bacula then prints:

17−Jan−2003 16:45 rufus−dir: Start Backup JobId 13,
 Job=kernsave.2003−01−17_16.45.46
17−Jan−2003 16:45 rufus−sd: Volume test01 previously written,
 moving to end of data.
17−Jan−2003 16:46 rufus−sd: kernsave.2003−01−17_16.45.46 Error:
 I cannot write on this volume because:
 The number of files mismatch! Volume=11 Catalog=10
17−Jan−2003 16:46 rufus−sd: Job kernsave.2003−01−17_16.45.46 waiting.
 Cannot find any appendable volumes.
Please use the "label" command to create a new Volume for:
 Storage: SDT−10000
 Media type: DDS−4
 Pool: Default

(note, lines wrapped for presentation)
To get out of this situation and use the same tape, you do the following:

update
Update choice:
 1: Volume parameters
 2: Pool from resource
 3: Slots from autochanger
Choose catalog item to update (1−3): 1
Defined Pools:
 1: Default
 2: File
Select the Pool (1−2):

+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−+

| MediaId | VolName | MediaType | VolStatus | VolBytes | Last | VolReten | Recy | Slot |

+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−+

| 1 | test01 | DDS−4 | Error | 352427156 | ... | 31536000 | 1 | 0 |

+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−+

Enter MediaId or Volume name: 1

(note table output truncated for presentation) First, you chose to update the Volume parameters
by entering a 1. In the volume listing that follows, notice how the VolStatus is Error. We will
correct that after changing the Volume Files. Continuing, you respond 1,

Updating Volume "test01"
Parameters to modify:
 1: Volume Status
 2: Volume Retention Period
 3: Volume Use Duration

Bacula Storage Management System

Rejected Volumes After a Crash 210

 4: Maximum Volume Jobs
 5: Maximum Volume Files
 6: Maximum Volume Bytes
 7: Recycle Flag
 8: Slot
 9: Volume Files
 10: Pool
 11: Done
Select parameter to modify (1−11): 9
Warning changing Volume Files can result
in loss of data on your Volume

Current Volume Files is: 10
Enter new number of Files for Volume: 11
New Volume Files is: 11
Updating Volume "test01"
Parameters to modify:
 1: Volume Status
 2: Volume Retention Period
 3: Volume Use Duration
 4: Maximum Volume Jobs
 5: Maximum Volume Files
 6: Maximum Volume Bytes
 7: Recycle Flag
 8: Slot
 9: Volume Files
 10: Pool
 11: Done
Select parameter to modify (1−10): 1

Here, you have selected 9 in order to update the Volume Files, then you changed it from 10 to
11, and you now answer 1 to change the Volume Status.

Current Volume status is: Error
Possible Values are:
 1: Append
 2: Archive
 3: Disabled
 4: Full
 5: Used
 6: Read−Only
Choose new Volume Status (1−6): 1
New Volume status is: Append
Updating Volume "test01"
Parameters to modify:
 1: Volume Status
 2: Volume Retention Period
 3: Volume Use Duration
 4: Maximum Volume Jobs
 5: Maximum Volume Files
 6: Maximum Volume Bytes
 7: Recycle Flag
 8: Slot
 9: Volume Files
 10: Pool
 11: Done
Select parameter to modify (1−11): 11
Selection done.

Bacula Storage Management System

Rejected Volumes After a Crash 211

At this point, you have changed the Volume Files from 10 to 11 to account for the last file being
written but not updated in the database, and you changed the Volume Status back to Append.

This was a lot of words to describe something quite simple.

The Volume Files option exists only in version 1.29 and later, and you should be careful using it.
Generally, if you set the value to that which Bacula said is on the tape, you will be OK,
especially if the value is one more than what is in the catalog.

Security Considerations

Only the File daemon needs to run with root permission (so that it can access all files). As a
consequence, you may run your Director, Storage daemon, and MySQL database server as
non−root processes. Version 1.30 has the −u and the −g options that allow you to specify a userid
and groupid on the command line to be used after Bacula starts.

You should protect the Bacula port addresses (normally 9101, 9102, and 9103) from outside
access by a firewall or other means of protection to prevent unauthorized use of your daemons.

You should ensure that the configuration files are not world readable since they contain
passwords that allow access to the daemons. Anyone who can access the Director using a console
program can restore any file from a backup Volume.

You should protect your Catalog database. If you are using SQLite, make sure that the working
directory is readable only by root (or your Bacula userid), and ensure that bacula.db has
permissions −rw−r−−r−− (i.e. 640) or more strict. If you are using MySQL, please note that the
Bacula setup procedure leaves the database open to anyone. At a minimum, you should assign
the user bacula a userid and add it to your Director's configuration file in the appropriate Catalog
resource.

Creating Holiday Schedules

If you normally change tapes every day or at least every Friday, but Thursday is a holiday, you
can use a trick proposed by Lutz Kittler to ensure that no job runs on Thursday so that you can
insert Friday's tape and be sure it will be used on Friday. To do so, define a RunJobBefore script
that normally returns zero, so that the Bacula job will normally continue. You can then modify
the script to return non−zero on any day when you do not want Bacula to run the job.

Automatic Labeling Using Your Autochanger

If you have an autochanger but it does not support barcodes, using a "trick" you can make
Bacula automatically label all the volumes in your autochanger's magazine.

First create a file containing one line for each slot in your autochanger that has a tape to be
labeled. The line will contain the slot number a colon (:) then the Volume name you want to use.
For example, create a file named volume−list, which contains:

1:Volume001
2:TestVolume02
5:LastVolume

Bacula Storage Management System

Security Considerations 212

The records do not need to be in any order and you don't need to mention all the slots. Normally,
you will have a consistent set of Volume names and a sequential set of numbers for each slot you
want labeled. In the example above, I've left out slots 3 and 4 just as an example. Now, modify
your mtx−changer script and comment out all the lines in the list) case by putting a # in column
1. Then add the following two lines:

 cat <absolute−path>/volume−list
 exit 0

so that the whole case looks like:

 list)
#
commented out lines
 cat <absolute−path>/volume−list
 exit 0
 ;;

where you replace <absolute−path> with the full path to the volume−list file. Then using the
console, you enter the following command:

 label barcodes

and Bacula will proceed to mount the autochanger Volumes in the list and label them with the
Volume names you have supplied. Bacula will think that the list was provided by the
autochanger barcodes, but in reality, it was you who supplied the <barcodes>.

If it seems to work, when it finishes, enter:

 list volumes

and you should see all the volumes nicely created.

Keep Your Client Machines' Clocks Synchronized to the
Director

Please ensure that the clocks on all your client machines are synchronized with the clock on the
server (Director) machine. If they are not synchronized or close, it is possible during an
Incremental or Differential backup that a file changed during the time difference of the machines
will not be backed up. This is because the Client uses the timestamp provided by the Director to
determine whether or not the files should be backed up.

Backing Up Portables Using DHCP

You may want to backup laptops or portables that are not always connected to the network. If
you are using DHCP to assign an IP address to those machines when they connect, you will need
to use the Dynamic Update capability of DNS to assign a name to those machines that can be
used in the Address field of the Client resource in the Director's conf file.

Bacula Storage Management System

Keep Your Client Machines' Clocks Synchronized to the Director 213

Going on Vacation

At some point, you may want to be absent for a week or two and you want to make sure Bacula
has enough tape left so that the backups will complete. You start by doing a list volumes in the
Console program:

list volumes

Using default Catalog name=BackupDB DB=bacula
Pool: Default
+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−
| MediaId | VolumeName | MediaType | VolStatus | VolBytes |
+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−
23	DLT−30Nov02	DLT8000	Full	54,739,278,128
24	DLT−21Dec02	DLT8000	Full	56,331,524,629
25	DLT−11Jan03	DLT8000	Full	67,863,514,895
26	DLT−02Feb03	DLT8000	Full	63,439,314,216
27	DLT−03Mar03	DLT8000	Full	66,022,754,598
28	DLT−04Apr03	DLT8000	Full	60,792,559,924
29	DLT−28Apr03	DLT8000	Full	62,072,494,063
30	DLT−17May03	DLT8000	Full	65,901,767,839
31	DLT−07Jun03	DLT8000	Used	56,558,490,015
32	DLT−28Jun03	DLT8000	Full	64,274,871,265
33	DLT−19Jul03	DLT8000	Full	64,648,749,480
34	DLT−08Aug03	DLT8000	Full	64,293,941,255
35	DLT−24Aug03	DLT8000	Append	9,999,216,782
+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−+

Note, I have truncated the output for presentation purposes. What is significant for is that I can
see that my current tape has almost 10 Gbytes of data, and that the average amount of data I get
on my tapes is about 60 Gbytes. So if I go on vacation now, I don't need to worry about tape
capacity (at least not for short absences).

Equally significant is the fact that I did go on vacation the 28th of June 2003, and when I did the
list volumes command, my current tape at that time, DLT−07Jun03 MediaId 31, had 56.5 Gbytes
written. I could see that the tape would fill shortly. Consequently, I manually marked it as Used
and replaced it with a fresh tape that I labeled as DLT−28Jun03, thus assuring myself that the
backups would all complete without my intervention.

How to Excude File on Windows Regardless of Case

This tip was submitted by Marc Brueckner who wasn't sure of the case of some of his files on
Win32, which is case insensitive. The problem is that Bacula thinks that /UNIMPORTANT
FILES is different from /Unimportant Files. Marc was aware that the file exclusion permits
wild−cards. So, he specified:

"/[Uu][Nn][Ii][Mm][Pp][Oo][Rr][Tt][Aa][Nn][Tt] [Ff][Ii][Ll][Ee][Ss]"

As a consequence, the above exclude works for files of any case.

Please note that this works only in Bacula Exclude statement and not in Include.

Bacula Storage Management System

Going on Vacation 214

Executing Scripts on a Remote Machine

This tip also comes from Marc Brueckner. First I thought the "Run Before Job" statement in the
Job−resource is for executing a script on the remote machine(the machine to be backed up). It
could be usefull to execute scripts on the remote machine e.g. for stopping databases or other
services while doing the backup. (Of cause I have to start the services again when the backup has
finished) I found the following solution: Bacula could execute scrips on the remote machine by
using ssh. The authentication is done automatically using a private key. First You have to
generate a keypair. I ve done this by:

ssh−keygen −b 4096 −t dsa −f Bacula_key

This statement may take a little time to run. It creates a public/private key pair with no pass
phrase. You could save the keys in /etc/bacula. Now you have two new files : Bacula_key which
contains the private key and Bacula_key.pub which contains the public key.

Now you have to append the Bacula_key.pub file to the file authorized_keys in the \root\.ssh
directory of the remote machine. Then you have to add (or uncomment) the line

AuthorizedKeysFile %h/.ssh/authorized_keys

to the sshd_config file on the remote machine. Where the %h stands for the home−directory of
the user (root in this case).

Assuming that your sshd is already running on the remove machine, you can now enter the
folloing on the machine where Bacula runs:

ssh −i Bacula_key −l root "ls −la"

This should execute the "ls −la" command on the remote machine.

Now you could add lines like the following to your Director's conf file:

...
Run Before Job = ssh −i /etc/bacula/Bacula_key 192.168.1.1 "/etc/init.d/database stop"
Run After Job = ssh −i /etc/bacula/Bacula_key 192.168.1.1 "/etc/init.d/database start"
...

Even though Bacula version 1.32 has a ClientRunBeforeJob, the ssh method still could be useful
for updating all the Bacula clients on several remote machines in a single script.

Using Autochangers Index Utility Programs

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula Storage Management System

Executing Scripts on a Remote Machine 215

http://www.bacula.org/

Bacula 1.32 User's Guide Chapter 16

Tips and Suggestions Index Tape Testing

Bacula Storage Management System

Executing Scripts on a Remote Machine 216

Volume Utility Tools
This document is describes the utility programs written to aid Bacula users and developers in
dealing with Volumes external to Bacula.

Specifying the Configuration File

Starting with version 1.27, each of the following programs requires a valid Storage daemon
configuration file (actually, the only part of the configuration file that these programs need is the
Device resource definitions). This permits the programs to find the configuration parameters for
your archive device (generally a tape drive). By default, they read bacula−sd.conf in the current
directory, but you may specify a different configuration file using the −c option.

Specifying a Device Name For a Tape

Each of these programs require a device−name where the Volume can be found. In the case of a
tape, this is the physical device name such as /dev/nst0 or /dev/rmt/0ubn depending on your
system. For the program to work, it must find the identical name in the Device resource of the
configuration file. See below for specifying Volume names.

Specifying a Device Name For a File

If you are attempting to read or write an archive file rather than a tape, the device−name should
be the full path to the archive location including the filename. The filename (last part of the
specification) will be stripped and used as the Volume name, and the path (first part before the
filename) must have the same entry in the configuration file. So, the path is equivalent to the
archive device name, and the filename is equivalent to the volume name.

Specifying Volumes

In general, you must specify the Volume name to each of the programs below (with the
exception of btape). The best method to do so is to specify a bootstrap file on the command line
with the −b option. As part of the bootstrap file, you will then specify the Volume name or
Volume names if more than one volume is needed. For example, suppose you want to read tapes
tape1 and tape2. First construct a bootstrap file named say, list.bsr which contains:

Volume=test1|test2

where each Volume is separated by a vertical bar. Then simply use:

./bls −b list.bsr /dev/nst0

In the case of Bacula Volumes that are on files, you may simply append volumes as follows:

./bls /tmp/test1\|test2

where the backslash (\) was necessary as a shell escape to permit entering the vertical bar (|).

And finally, if you feel that specifying a Volume name is a bit complicated with a bootstrap file,
you can use the −V option (on all programs except bcopy) to specify one or more Volume names

Volume Utility Tools 217

separated by the vertical bar (|). For example,

./bls −V Vol001 /dev/nst0

You may also specify an asterisk (*) to indicate that the program should accept any volume. For
example:

./bls −V* /dev/nst0

Bacula Storage Management System

Volume Utility Tools 218

bls
bls can be used to do an ls type listing of a Bacula tape or file. It is called:

Usage: bls [−d debug_level] <device−name>
 −b <file> specify a bootstrap file
 −c <file> specify a configuration file
 −d <level> specify a debug level
 −e <file> exclude list
 −i <file> include list
 −j list jobs
 −k list blocks
 −L list tape label
 (none of above) list saved files
 −t use default tape device
 −v be verbose
 −V specify Volume names (separated by |)
 −? print this message

For example, to list the contents of a tape:

./bls −V Volume−name /dev/nst0

Or to list the contents of a file:

./bls /tmp/Volume−name
or
./bls −V Volume−name /tmp

Note that, in the case of a file, the Volume name becomes the filename, so in the above example,
you will replace the xxx with the name of the volume (file) you wrote.

Normally if no options are specified, bls will produce the equivalent output to the ls −l command
for each file on the tape. Using other options listed above, it is possible to display only the Job
records, only the tape blocks, etc. For example:

./bls /tmp/File002

bls: butil.c:148 Using device: /tmp

drwxrwxr−x 3 kern kern 4096 2002−10−19 21:08 /home/kern/bacula/k/src/dird/

drwxrwxr−x 2 kern kern 4096 2002−10−10 18:59 /home/kern/bacula/k/src/dird/CVS/

−rw−rw−r−− 1 kern kern 54 2002−07−06 18:02 /home/kern/bacula/k/src/dird/CVS/Root

−rw−rw−r−− 1 kern kern 16 2002−07−06 18:02 /home/kern/bacula/k/src/dird/CVS/Repository

−rw−rw−r−− 1 kern kern 1783 2002−10−10 18:59 /home/kern/bacula/k/src/dird/CVS/Entries

−rw−rw−r−− 1 kern kern 97506 2002−10−18 21:07 /home/kern/bacula/k/src/dird/Makefile

−rw−r−−r−− 1 kern kern 3513 2002−10−18 21:02 /home/kern/bacula/k/src/dird/Makefile.in

−rw−rw−r−− 1 kern kern 4669 2002−07−06 18:02 /home/kern/bacula/k/src/dird/README−config

−rw−r−−r−− 1 kern kern 4391 2002−09−14 16:51 /home/kern/bacula/k/src/dird/authenticate.c

−rw−r−−r−− 1 kern kern 3609 2002−07−07 16:41 /home/kern/bacula/k/src/dird/autoprune.c

−rw−rw−r−− 1 kern kern 4418 2002−10−18 21:03 /home/kern/bacula/k/src/dird/bacula−dir.conf

...

−rw−rw−r−− 1 kern kern 83 2002−08−31 19:19 /home/kern/bacula/k/src/dird/.cvsignore

bls: Got EOF on device /tmp

84 files found.

bls 219

Listing Bacula Jobs

If you are listing a Volume to determine what you Jobs to restore, normally the −j option
provides you with most of what you will need as long as you don't have multiple clients. For
example,

./bls −j /tmp/test1
Volume Record: SessId=2 SessTime=1033762386 JobId=0 DataLen=144
Begin Session Record: SessId=2 SessTime=1033762386 JobId=1 Level=F Type=B
End Session Record: SessId=2 SessTime=1033762386 JobId=1 Level=F Type=B
Begin Session Record: SessId=3 SessTime=1033762386 JobId=2 Level=I Type=B
End Session Record: SessId=3 SessTime=1033762386 JobId=2 Level=I Type=B
Begin Session Record: SessId=4 SessTime=1033762386 JobId=3 Level=I Type=B
End Session Record: SessId=4 SessTime=1033762386 JobId=3 Level=I Type=B
bls: Got EOF on device /tmp

shows a full save followed by two incremental saves.

Adding the −v option will display virtually all information that is available for each record:

Listing Bacula Blocks

Normally except for debug purposes, you will not need to list Bacula blocks (the "primitive" unit
of Bacula data on the Volume). However, you can do so with:

./bls −k /tmp/File002
bls: butil.c:148 Using device: /tmp
Block: 1 size=64512
Block: 2 size=64512
...
Block: 65 size=64512
Block: 66 size=19195
bls: Got EOF on device /tmp
End of File on device

By adding the −v option, you can get more information, which can be useful in knowing what
sessions were written to the volume:

./bls −k −v /tmp/File002

Volume Label:
Id : Bacula 0.9 mortal
VerNo : 10
VolName : File002
PrevVolName :
VolFile : 0
LabelType : VOL_LABEL
LabelSize : 147
PoolName : Default
MediaType : File
PoolType : Backup
HostName :
Date label written: 2002−10−19 at 21:16

Block: 1 blen=64512 First rec FI=VOL_LABEL SessId=1 SessTim=1035062102 Strm=0 rlen=147

Block: 2 blen=64512 First rec FI=6 SessId=1 SessTim=1035062102 Strm=DATA rlen=4087

Bacula Storage Management System

Listing Bacula Blocks 220

Block: 3 blen=64512 First rec FI=12 SessId=1 SessTim=1035062102 Strm=DATA rlen=5902

Block: 4 blen=64512 First rec FI=19 SessId=1 SessTim=1035062102 Strm=DATA rlen=28382

...

Block: 65 blen=64512 First rec FI=83 SessId=1 SessTim=1035062102 Strm=DATA rlen=1873

Block: 66 blen=19195 First rec FI=83 SessId=1 SessTim=1035062102 Strm=DATA rlen=2973

bls: Got EOF on device /tmp

End of File on device

Armed with the SessionId and the SessionTime, you can extract just about anything.

If you want to know even more, add a second −v to the command line to get a dump of every
record in every block.

./bls −k −v −v /tmp/File002
bls: block.c:79 Dump block 80f8ad0: size=64512 BlkNum=1
 Hdrcksum=b1bdfd6d cksum=b1bdfd6d
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=VOL_LABEL Strm=0 len=147 p=80f8b40
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=SOS_LABEL Strm=−7 len=122 p=80f8be7
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=1 Strm=UATTR len=86 p=80f8c75
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=2 Strm=UATTR len=90 p=80f8cdf
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=3 Strm=UATTR len=92 p=80f8d4d
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=3 Strm=DATA len=54 p=80f8dbd
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=3 Strm=MD5 len=16 p=80f8e07
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=4 Strm=UATTR len=98 p=80f8e2b
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=4 Strm=DATA len=16 p=80f8ea1
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=4 Strm=MD5 len=16 p=80f8ec5
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=5 Strm=UATTR len=96 p=80f8ee9
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=5 Strm=DATA len=1783 p=80f8f5d
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=5 Strm=MD5 len=16 p=80f9668
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=UATTR len=95 p=80f968c
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=DATA len=32768 p=80f96ff
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=DATA len=32768 p=8101713
bls: block.c:79 Dump block 80f8ad0: size=64512 BlkNum=2
 Hdrcksum=9acc1e7f cksum=9acc1e7f
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=contDATA len=4087 p=80f8b40
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=DATA len=31970 p=80f9b4b
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=MD5 len=16 p=8101841
...

Bacula Storage Management System

Listing Bacula Blocks 221

bextract
Normally, you will restore files by running a Restore Job from the Console program. However,
bextract can be used to extract a single file or a list of files from a Bacula tape or file. In fact,
bextract can be a useful tool to restore files to an empty system assuming you are able to boot,
you have statically linked bextract and you have an appropriate bootstrap file.

It is called:

Usage: bextract [−d debug_level] <device−name> <directory−to−store−files>
 −b specify a bootstrap file
 −dnn set debug level to nn
 −e <file> exclude list
 −i <file> include list
 −V specify Volume names (separated by |)
 −? print this message

where device−name is the Archive Device (raw device name or full filename) of the device to be
read, and directory−to−store−files is a path prefix to prepend to all the files restored.

NOTE: On Windows systems, if you specify a prefix of say d:/tmp, any file that would have
been restored to c:/My Documents will be restored to d:/tmp/My Documents. That is the
original drive specification will be stripped. If no prefix is specified, the file will be restored to
the original drive.

Extracting with Include or Exclude Lists

Using the −e option, you can specify a file containing a list of files to be excluded. Wildcards can
be used in the exclusion list. This option will normally be used in conjunction with the −i option
(see below). Both the −e and the −i options may be specified at the same time as the −b option.
The bootstrap filters will be applied first, then the include list, then the exclude list.

Likewise, and probably more importantly, with the −i option, you can specify a file that contains
a list (one file per line) of files and directories to include for restoration. The list must contain the
full filename with the path. If you specify a path name only, it should be terminated with a slash,
and all files and subdirectories of that path will be restored. If you specify a line containing only
the filename (e.g. my−file.txt) it probably will not be extracted because you have not specified
the full path.

For example, if the file include−list contains:

/home/kern/bacula
/usr/local/bin

N.B. Please do not include a trailing slash on directory names. This confuses Bacula.

Then the command:

./bextract −i include−list /dev/nst0 /tmp

will restore from the Bacula archive /dev/nst0 all files and directories in the backup from

bextract 222

/home/kern/bacula and from /usr/local/bin. The restored files will be placed in a file of the
original name under the directory /tmp (i.e. /tmp/home/kern/bacula/... and /tmp/usr/local/bin/...).

Extracting With a Bootstrap File

The −b option is used to specify a bootstrap file containing the information needed to restore
precisely the files you want. Specifying a bootstrap file is optional but recommended because it
gives you the most control over which files will be restored. For more details on the bootstrap
file, please see Restoring Files with the Bootstrap File chapter of this document. Note, you may
also use a bootstrap file produced by the restore command. For example:

./bextract −b bootstrap−file /dev/nst0 /tmp

The bootstrap file allows detailed specification of what files you want restored (extracted). You
may specify a bootstrap file and include and/or exclude files at the same time. The bootstrap
conditions will first be applied, and then each file record seen will be compared to the include
and exclude lists.

Extracting From Multiple Volumes

If you wish to extract files that span several Volumes, you can specify the Volume names in the
bootstrap file or you may specify the Volume names on the command line by separating them
with a vertical bar. See the section above under the bls program entitled Listing Multiple
Volumes for more information. The same techniques apply equally well to the bextract
program.

Bacula Storage Management System

Extracting With a Bootstrap File 223

bscan
The bscan program can be used to re−create a database (catalog) from the backup information
written to one or more Volumes. With some care, it can also be used to synchronize your existing
catalog with a Volume. Since bscan is not sufficiently tested, we strongly recommend that you
do a simple ASCII backup of your database before running bscan just to be sure. See
Compacting Your Database.

After the loss of a hard disk, if you do not have a valid bootstrap file for reloading your system,
or if a Volume has been recycled but not overwritten, you can use bscan to re−create your
database, which can then be used to restore your system to its previous state.

It is called:

Usage: bscan [options]
 −b bootstrap specify a bootstrap file
 −dnn set debug level to nn
 −m update media info in database
 −n name specify the database name (default bacula)
 −u user specify database user name (default bacula)
 −p password specify database password (default none)
 −r list records
 −s synchronize or store in database
 −v verbose
 −V specify Volume names (separated by |)
 −w dir specify working directory (default /tmp)
 −? print this message

If you are using SQLite as your database, you must supply the −w option and provide the path to
the "working−directory" which contains the database (normally bacula.db).

If you are using MySQL, there is no need to supply a working directory since MySQL knows
where its databases are.

If you have provided security on your MySQL database, you may also need to supply either the
database name (−b option), the user name (−u option), and/or the password (−p) options.

Using bscan to Compare a Volume to an existing Catalog

If you wish to compare the contents of a Volume to an existing catalog without changing the
catalog, you can safely do so if and only if you do not specify either the −m or the −s options.
However, at this time (Bacula version 1.26), the comparison routines are not as good or as
thorough as they should be, so we don't particularly recommend this mode other than for testing.

Using bscan to Re−create a Catalog from a Volume

This is the mode for which bscan is most useful. You can either bscan into a freshly created
catalog, or directly into your existing catalog (after having made an ASCII copy as described
above). Normally, you should start with a freshly created catalog that contains no data.

Starting with a single Volume named TestVolume1, you run a command such as:

bscan 224

./bscan −V TestVolume1 −v −s −w /usr/bin/bacula/working /dev/nst0

If there is more than one volume, simply append it to the first one separating it with a vertical
bar. You may need precede the vertical bar with a forward slash escape the shell −− e.g.
TestVolume1\|TestVolume2. The −v option was added for verbose output (this can be omitted if
desired). The −s option that tells bscan to store information in the database, the location of your
working−directory (−w option) as you previously defined it. The physical device name /dev/nst0
is specified after all the options.

For example, after having done a full backup of a directory, then two incrementals, I reinitialized
the SQLite database as described above, and using the bootstrap.bsr file noted above, I entered
the following command:

./bscan −b bootstrap.bsr −v −s −w /home/kern/bacula/working /dev/nst0

which produced the following output:

bscan: bscan.c:182 Using Database: bacula, User: bacula
bscan: bscan.c:673 Created Pool record for Pool: Default
bscan: bscan.c:271 Pool type "Backup" is OK.
bscan: bscan.c:632 Created Media record for Volume: TestVolume1
bscan: bscan.c:298 Media type "DDS−4" is OK.
bscan: bscan.c:307 VOL_LABEL: OK for Volume: TestVolume1
bscan: bscan.c:693 Created Client record for Client: Rufus
bscan: bscan.c:769 Created new JobId=1 record for original JobId=2
bscan: bscan.c:717 Created FileSet record "Kerns Files"
bscan: bscan.c:819 Updated Job termination record for new JobId=1
bscan: bscan.c:905 Created JobMedia record JobId 1, MediaId 1
bscan: Got EOF on device /dev/nst0
bscan: bscan.c:693 Created Client record for Client: Rufus
bscan: bscan.c:769 Created new JobId=2 record for original JobId=3
bscan: bscan.c:708 Fileset "Kerns Files" already exists.
bscan: bscan.c:819 Updated Job termination record for new JobId=2
bscan: bscan.c:905 Created JobMedia record JobId 2, MediaId 1
bscan: Got EOF on device /dev/nst0
bscan: bscan.c:693 Created Client record for Client: Rufus
bscan: bscan.c:769 Created new JobId=3 record for original JobId=4
bscan: bscan.c:708 Fileset "Kerns Files" already exists.
bscan: bscan.c:819 Updated Job termination record for new JobId=3
bscan: bscan.c:905 Created JobMedia record JobId 3, MediaId 1
bscan: Got EOF on device /dev/nst0
bscan: bscan.c:652 Updated Media record at end of Volume: TestVolume1
bscan: bscan.c:428 End of Volume. VolFiles=3 VolBlocks=57 VolBytes=10,027,437

The key points to note are that bscan prints a line when each major record is created. Due to the
volume of output, it does not print a line for each file record unless you supply the −v option
twice or more on the command line.

In the case of a Job record, the new JobId will not normally be the same as the original Jobid. For
example, for the first JobId above, the new JobId is 1 but the original JobId is 2. This is nothing
to be concerned about as it is the normal nature of databases. bscan will keep everything straight.

Although bscan claims that it created a Client record for Client: Rufus three times, it was
actually only created the first time. This is normal.

Bacula Storage Management System

bscan 225

You will also notice that it read an end of file after each Job (Got EOF on device ...). Finally the
last line gives the total statistics for the bscan.

If you had added a second −v option to the command line, Bacula would have been even more
verbose, dumping virtually all the details of each Job record it encountered.

Now if you start Bacula and enter a list jobs command to the console program, you will get:

+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−+

| JobId | Name | StartTime | Type | Lvl | JobFiles | JobBytes | JobStat |

+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−+

| 1 | kernsave | 2002−10−07 14:59 | B | F | 84 | 4180207 | T |

| 2 | kernsave | 2002−10−07 15:00 | B | I | 15 | 2170314 | T |

| 3 | kernsave | 2002−10−07 15:01 | B | I | 33 | 3662184 | T |

+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−+

which corresponds virtually identically with what the database contained before it was
re−initialized and restored with bscan. All the Jobs and Files found on the tape are restore
including most of the Media record. The Volume (Media) records restored will be marked as
Full so that they cannot be rewritten without operator intervention.

It should be noted that bscan cannot restore a database to the exact condition it was in previously
because a lot of the less important information contained in the database is not saved to the tape.
Nevertheless, the reconstruction is sufficiently complete that you can run restore against it and
get valid results.

Using bscan to Correct the Volume File Count

If the Storage daemon crashes during a backup Job, the catalog will no be properly updated for
the Volume being used at the time of the crash. This means that the Storage daemon will have
written say 20 files on the tape, but the catalog record for the Volume indicates only 19 files.

Bacula refuses to write on a tape that contains a different number of files from what is in the
catalog. To correct this situation, you may run a bscan with the −m option (but without the −s
option) to update only the final Media record for the Volumes read.

After bscan

If you use bscan to enter the contents of the Volume into an existing catalog, you should be
aware that the records you entered may be pruned during the next job particularly if the Volume
is very old or had been previously purged. To avoid this, after running bscan, you can manually
set the volume status (VolStatus) to Read−Only by using the update command in the catalog.
This will allow you to restore from the volume without having it immediately purged. When you
have restored and backed up the data, you can reset the VolStatus to Used and the Volume will
be purged from the catalog.

bscan Restrictions

Bacula Storage Management System

Using bscan to Correct the Volume File Count 226

bscan will not correctly restore everything from a Volume if you have written multiple
simultaneous jobs. Instead, it will select one job at a time, and restore everything for that job, but
any other jobs that simultaneously wrote to the volume will be skipped. This problem can be
overcome with a bit of pain if you use bls to list which jobs were run at the same time, and then
using a Bootstrap file, you run bscan multiple times, each time, selecting only a single job with
your Bootstrap file. This shortcoming will be fixed in a later release.

Bacula Storage Management System

Using bscan to Correct the Volume File Count 227

bcopy
The bcopy program can be used to copy one Bacula archive file to another. For example, you
may copy a tape to a file, a file to a tape, a file to a file, or a tape to a tape. For tape to tape, you
will need two tape drives. (a later version is planned that will buffer it to disk).

bcopy Command Options

Usage: bcopy [−d debug_level] <input−archive> <output−archive>
 −b bootstrap specify a bootstrap file
 −c <file> specify configuration file
 −dnn set debug level to nn
 −i specify input Volume names (separated by |)
 −o specify output Volume names (separated by |)
 −v verbose
 −w dir specify working directory (default /tmp)
 −? print this message

By using a bootstrap file, you can copy parts of a Bacula archive file to another archive.

One of the objectives of this program is to be able to recover as much data as possible from a
damaged tape. However, the current version does not yet have this feature.

As this is a new program, any feedback on its use would be appreciated. In addition, I only have
a single tape drive, so I have never been able to test this program with two tape drives.

bcopy 228

btape
This program permits a number of elementary tape operations via a tty command interface. The
test command, described below, can be very useful for testing older tape drive compatibility
problems. Aside from initial testing of tape drive compatibility with Bacula, btape will be
mostly used by developers writing new tape drivers.

btape can be dangerous to use with existing Bacula tapes because it will relabel a tape or write
on the tape if so requested regardless that the tape may contain valuable data, so please be careful
and use it only on blank tapes.

To work properly, btape needs to read the Storage daemon's configuration file. As a default, it
will look for bacula−sd.conf in the current directory. If your configuration file is elsewhere,
please use the −c option to specify where.

The physical device name must be specified on the command line, and that this same device
name must be present in the Storage daemon's configuration file read by btape

Usage: btape [−c config_file] [−d debug_level] [device_name]
 −c <file> set configuration file to file
 −dnn set debug level to nn
 −s turn off signals
 −t open the default tape device
 −? print this message.

Using btape to Verify your Tape Drive

An important reason for this program is to ensure that a Storage daemon configuration file is
defined so that Bacula will correctly read and write tapes.

It is highly recommended that you run the test command before running your first Bacula job to
ensure that the parameters you have defined for your storage device (tape drive) will permit
Bacula to function properly. You only need to mount a blank tape, enter the command, and the
output should be reasonably self explanatory. Please see the Tape Testing Chapter of this manual
for the details.

btape Commands

The full list of commands are:

 Command Description
 ======= ===========
 bsf backspace file
 bsr backspace record
 cap list device capabilities
 clear clear tape errors
 eod go to end of Bacula data for append
 test General test Bacula tape functions
 eom go to the physical end of medium
 fill fill tape, write onto second volume
 unfill read filled tape
 fsf forward space a file
 fsr forward space a record

btape 229

 help print this command
 label write a Bacula label to the tape
 load load a tape
 quit quit btape
 rd read tape
 readlabel read and print the Bacula tape label
 rectest test record handling functions
 rewind rewind the tape
 scan read tape block by block to EOT and report
 status print tape status
 test test a tape for compatibility with Bacula
 weof write an EOF on the tape
 wr write a single record of 2048 bytes

The most useful commands are:

test −− test writing records and EOF marks and reading them back.•
fill −− completely fill a volume with records, then write a few records on a second
volume, and finally, both volumes will be read back. Please be aware that the data
written will be quite similar every record, so you might want to turn compression off.
One user found that the fill command wrote 750Gb to a tape that can hold 35Gb −− so
you can see that the hardware compression really worked well!

•

readlabel −− read and dump the label on a Bacula tape.•
cap −− list the device capabilities as defined in the configuration file and as perceived by
the Storage daemon.

•

The readlabel command can be used to display the details of a Bacula tape label. This can be
useful if the physical tape label was lost or damaged.

In the event that you want to relabel a Bacula, you can simply use the label command which will
write over any existing label. However, please note for labeling tapes, we recommend that you
use the label command in the Console program since it will never overwrite a valid Bacula tape.

Bacula Storage Management System

btape 230

Other Programs
The following programs are general utility programs and in general do not need a configuration
file nor a device name.

Other Programs 231

smtp
smtp is a simple mail transport program that permits more flexibility than the standard mail
programs typically found on Unix systems. It can even be used on Windows machines.

It is called:

Usage: smtp [−f from] [−h mailhost] [−s subject] [−c copy] [recipient ...]
 −c set the Cc: field
 −dnn set debug level to nn
 −f set the From: field
 −h use mailhost:port as the SMTP server
 −s set the Subject: field
 −? print this message.

If the −f option is not specified, smtp will use your userid. If the option is not specified smtp
will use the value in the environment variable SMTPSERVER or if there is none localhost. By
default the port 25 is used.

recipients is a space separated list of email recipients.

The body of the email message is read from standard input.

An example of the use of smtp would be to put the following statement in the Messages resource
of your bacula−dir.conf file. Note, these commands should appear on a single line each.

 mailcommand = "/home/bacula/bin/smtp −h mail.domain.com −f \"\(Bacula\) %r\"
 −s \"Bacula: %t %e of %c %l\" %r"
 operatorcommand = "/home/bacula/bin/smtp −h mail.domain.com −f \"\(Bacula\) %r\"
 −s \"Bacula: Intervention needed for %j\" %r"

Where you replace /home/bacula/bin with the path to your Bacula binary directory, and you
replace mail.domain.com with the fully qualified name of your SMTP (email) server, which
normally listens on port 25. For more details on the substitution characters (e.g. %r) used in the
above line, please see the documentation of the MailCommand in the Messages Resource chapter
of this manual.

It is HIGHLY recommended that you test one or two cases by hand to make sure that the
mailhost that you specified is correct and that it will accept your email requests. Since smtp
always uses a TCP connection rather than writing in the spool file, you may find that your from
address is being rejected because it does not contain a valid domain, or because your message is
caught in your spam filtering rules. Generally, you should specify a fully qualified domain name
in the from field, and depending on whether your SMTP gateway is Exim or Sendmail, you may
need to modify the syntax of the from part of the message. Please test.

smtp 232

dbcheck
dbcheck is a simple program that will search for inconsistencies in your database, and optionally
fix them. The dbcheck program can be found in the <bacula−source>/src/tools directory of the
source distribution. Though it is built with the make process, it is not normally "installed".

It is called:

Usage: dbcheck [−d debug_level] <working−directory>
 <bacula−database> <user> <password>
 −b batch mode
 −dnn set debug level to nn
 −f fix inconsistencies
 −v verbose
 −? print this message

If the −f option is specified, dbcheck will repair (fix) the inconsistencies it finds. Otherwise, it
will report only.

If the −b option is specified, dbcheck will run in batch mode, and it will proceed to examine and
fix (if −f is set) all programmed inconsistency checks. If the −b option is not specified, dbcheck
will enter interactive mode and prompt with the following:

Hello, this is the database check/correct program.
Please select the function you want to perform.

 1) Toggle modify database flag
 2) Toggle verbose flag
 3) Eliminate duplicate Filename records
 4) Eliminate duplicate Path records
 5) Eliminate orphaned Jobmedia records
 6) Eliminate orphaned File records
 7) Eliminate orphaned Path records
 8) Eliminate orphaned Filename records
 9) Eliminate orphaned FileSet records
 10) All (3−9)
 11) Quit
Select function number:

By entering 1 or 2, you can toggle the modify database flag (−f option) and the verbose flag (−v).
It can be helpful and reassuring to turn off the modify database flag, then select one or more of
the consistency checks (items 3 through 9) to see what will be done, then toggle the modify flag
on and re−run the check.

The inconsistencies examined are the following:

Duplicate filename records. This can happen if you accidentally run two copies of
Bacula at the same time, and they are both adding filenames simultaneously. It is a rare
occurrence, but will create an inconsistent database. If this is the case, you will receive
error messages during Jobs warning of duplicate database records. If you are not getting
these error messages, there is no reason to run this check.

•

Duplicate path records. This can happen if you accidentally run two copies of Bacula at
the same time, and they are both adding filenames simultaneously. It is a rare
occurrence, but will create an inconsistent database. See the item above for why this

•

dbcheck 233

occurs and how you know it is happening.
Orphaned JobMedia records. This happens when a Job record is deleted (perhaps by a
user issued SQL statement), but the corresponding JobMedia record (one for each
Volume used in the Job) was not deleted. Normally, this should not happen, and even if
it does, these records generally do not take much space in your database. However, by
running this check, you can eliminate any such orphans.

•

Orphaned File records. This happens when a Job record is deleted (perhaps by a user
issued SQL statement), but the corresponding File record (one for each Volume used in
the Job) was not deleted. Note, searching for these records can be very time consuming
(i.e. it may take hours) for a large database. Normally this should not happen as Bacula
takes care to prevent it. Just the same, this check can remove any orphaned File records.
It is recommended that you run this once a year since orphaned File records can take a
large amount of space in your database.

•

Orphaned Path records. This condition happens any time a directory is deleted from your
system and all associated Job records have been purged. During standard purging (or
pruning) of Job records, Bacula does not check for orphaned Path records. As a
consequence, over a period of time, old unused Path records will tend to accumulate and
use space in your database. This check will eliminate them. It is strongly recommended
that you run this check at least once a year.

•

Orphaned Filename records. This condition happens any time a file is deleted from your
system and all associated Job records have been purged. This can happen quite
frequently as there are quite a large number of files that are created and then deleted. In
addition, if you do a system update or delete an entire directory, there can be a very large
number of Filename records that remain in the catalog but are no longer used.

•

During standard purging (or pruning) of Job records, Bacula does not check for
orphaned Filename records. As a consequence, over a period of time, old unused
Filename records will to accumulate and use space in your database. This check will
eliminate them. It is strongly recommended that you run this check at least once a year,
and for large database (more than 200 Megabytes), it is probably better to run this once
every 6 months.

Bacula Storage Management System

dbcheck 234

testfind
testfind permits listing of files using the same search engine that is used for the Include resource
in Job resources. Note, much of the functionality of this program (listing of files to be included)
is present in the estimate command in the Console program.

The original use of testfind was to ensure that Bacula's file search engine was correct and to print
some statistics on file name and path length. However, you may find it useful to see what bacula
would do with a given Include resource. testfind program can be found in the
<bacula−source>/src/tools directory of the source distribution. Though it is built with the make
process, it is not normally "installed".

It is called:

Usage: testfind [−d debug_level] [−] [pattern1 ...]
 −a print extended attributes (Win32 debug)
 −dnn set debug level to nn
 − read pattern(s) from stdin
 −? print this message.

Patterns are file inclusion −− normally directories.
Debug level>= 1 prints each file found.
Debug level>= 10 prints path/file for catalog.
Errors always printed.
Files/paths truncated is number with len> 255.
Truncation is only in catalog.

Where a pattern is any filename specification that is valid within an Include resource definition.
If none is specified, / (the root directory) is assumed. For example:

./testfind /bin

Would print the following:

Dir: /bin
Reg: /bin/bash
Lnk: /bin/bash2 −> bash
Lnk: /bin/sh −> bash
Reg: /bin/cpio
Reg: /bin/ed
Lnk: /bin/red −> ed
Reg: /bin/chgrp
...
Reg: /bin/ipcalc
Reg: /bin/usleep
Reg: /bin/aumix−minimal
Reg: /bin/mt
Lnka: /bin/gawk−3.1.0 −> /bin/gawk
Reg: /bin/pgawk
Total files : 85
Max file length: 13
Max path length: 5
Files truncated: 0
Paths truncated: 0

testfind 235

Even though testfind uses the same search engine as Bacula, each directory to be listed, must be
entered as a separate command line entry or entered one line at a time to standard input if the −
option was specified.

Specifying a debug level of one (i.e. −d1) on the command line will cause testfind to print the
raw filenames without showing the Bacula internal file type, or the link (if any). Debug levels of
10 or greater cause the filename and the path to be separated using the same algorithm that is
used when putting filenames into the Catalog database.

Tips and Suggestions Index Tape Testing

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 17

Utility Programs Index When Bacula crashes (Kaboom)

Bacula Storage Management System

testfind 236

http://www.bacula.org/

Testing Your Tape Drive With Bacula
This chapter is concerned with testing and configuring your tape drive to make sure that it will
work properly with Bacula using the btape program.

Specifying the Configuration File

Starting with version 1.27, each of the btape program requires a valid Storage daemon
configuration file (actually, the only part of the configuration file that btape needs is the Device
resource definitions). This permits btape to find the configuration parameters for your archive
device (generally a tape drive). By default, it reads bacula−sd.conf in the current directory, but
you may specify a different configuration file using the −c option.

Specifying a Device Name For a Tape

btape device−name where the Volume can be found. In the case of a tape, this is the physical
device name such as /dev/nst0 or /dev/rmt/0ubn depending on your system. For the program to
work, it must find the identical name in the Device resource of the configuration file. See below
for specifying Volume names.

Specifying a Device Name For a File

If you are attempting to read or write an archive file rather than a tape, the device−name should
be the full path to the archive location including the filename. The filename (last part of the
specification) will be stripped and used as the Volume name, and the path (first part before the
filename) must have the same entry in the configuration file. So, the path is equivalent to the
archive device name, and the filename is equivalent to the volume name.

Testing Your Tape Drive With Bacula 237

btape
This program permits a number of elementary tape operations via a tty command interface. The
test command, described below, can be very useful for testing older tape drive compatibility
problems. Aside from initial testing of tape drive compatibility with Bacula, btape will be
mostly used by developers writing new tape drivers.

btape can be dangerous to use with existing Bacula tapes because it will relabel a tape or write
on the tape if so requested regardless that the tape may contain valuable data, so please be careful
and use it only on blank tapes.

To work properly, btape needs to read the Storage daemon's configuration file. As a default, it
will look for bacula−sd.conf in the current directory. If your configuration file is elsewhere,
please use the −c option to specify where.

The physical device name must be specified on the command line, and that this same device
name must be present in the Storage daemon's configuration file read by btape

Usage: btape [−c config_file] [−d debug_level] [device_name]
 −c <file> set configuration file to file
 −dnn set debug level to nn
 −s turn off signals
 −t open the default tape device
 −? print this message.

Using btape to Verify your Tape Drive

An important reason for this program is to ensure that a Storage daemon configuration file is
defined so that Bacula will correctly read and write tapes.

It is highly recommended that you run the test command before running your first Bacula job to
ensure that the parameters you have defined for your storage device (tape drive) will permit
Bacula to function properly. You only need to mount a blank tape, enter the command, and the
output should be reasonably self explanatory. For example:

(ensure that Bacula is not running)
./btape −c /usr/bin/bacula/bacula−sd.conf /dev/nst0

The output will be:

Tape block granularity is 1024 bytes.
btape: btape.c:376 Using device: /dev/nst0
*

Enter the test command:

test

The output produced should be something similar to the following:

=== Append files test ===

btape 238

This test is essential to Bacula.

I'm going to write one record in file 0,
 two records in file 1,
 and three records in file 2

btape: btape.c:387 Rewound /dev/nst0
btape: btape.c:855 Wrote one record of 64412 bytes.
btape: btape.c:857 Wrote block to device.
btape: btape.c:410 Wrote EOF to /dev/nst0
btape: btape.c:855 Wrote one record of 64412 bytes.
btape: btape.c:857 Wrote block to device.
btape: btape.c:855 Wrote one record of 64412 bytes.
btape: btape.c:857 Wrote block to device.
btape: btape.c:410 Wrote EOF to /dev/nst0
btape: btape.c:855 Wrote one record of 64412 bytes.
btape: btape.c:857 Wrote block to device.
btape: btape.c:855 Wrote one record of 64412 bytes.
btape: btape.c:857 Wrote block to device.
btape: btape.c:855 Wrote one record of 64412 bytes.
btape: btape.c:857 Wrote block to device.
btape: btape.c:410 Wrote EOF to /dev/nst0
btape: btape.c:387 Rewound /dev/nst0
btape: btape.c:693 Now moving to end of media.
btape: btape.c:427 Moved to end of media
We should be in file 3. I am at file 3. This is correct!

Now the important part, I am going to attempt to append to the tape.

btape: btape.c:855 Wrote one record of 64412 bytes.
btape: btape.c:857 Wrote block to device.
btape: btape.c:410 Wrote EOF to /dev/nst0
btape: btape.c:387 Rewound /dev/nst0
Done appending, there should be no I/O errors

Doing Bacula scan of blocks:
1 block of 64448 bytes in file 1
End of File mark.
2 blocks of 64448 bytes in file 2
End of File mark.
3 blocks of 64448 bytes in file 3
End of File mark.
1 block of 64448 bytes in file 4
End of File mark.
Total files=4, blocks=7, bytes = 451136
End scanning the tape.
We should be in file 4. I am at file 4. This is correct!

The above Bacula scan should have output identical to what follows.
Please double check it ...
=== Sample correct output ===
1 block of 64448 bytes in file 1
End of File mark.
2 blocks of 64448 bytes in file 2
End of File mark.
3 blocks of 64448 bytes in file 3
End of File mark.
1 block of 64448 bytes in file 4
End of File mark.
Total files=4, blocks=7, bytes = 451136

Bacula Storage Management System

btape 239

=== End sample correct output ===

If the above scan output is not identical to the
sample output, you MUST correct the problem
or Bacula will not be able to write multiple Jobs to
the tape.

=== Write, backup, and re−read test ===

I'm going to write three records and two eof's
then backup over the eof's and re−read the last record.
Bacula does this after writing the last block on the
tape to verify that the block was written correctly.
It is not an *essential* feature ...

btape: btape.c:387 Rewound /dev/nst0
btape: btape.c:597 Wrote first record of 64412 bytes.
btape: btape.c:608 Wrote second record of 64412 bytes.
btape: btape.c:619 Wrote third record of 64412 bytes.
btape: btape.c:410 Wrote EOF to /dev/nst0
btape: btape.c:410 Wrote EOF to /dev/nst0
btape: btape.c:631 Backspaced over two EOFs OK.
btape: btape.c:636 Backspace record OK.
btape: btape.c:658
Block re−read correct. Test succeeded!
=== End Write, backup, and re−read test ===

=== End Append files test ===

If you do not successfully complete the above test, please resolve the problem(s) before
attempting to use Bacula. Depending on your tape drive, the test may recommend that you add
certain records to your configuration. We strongly recommend that you do so and then re−run the
above test to insure it works the first time.

Tips for Resolving Problems

Incorrect File Number

When Bacula moves to the end of the medium, it normally uses the ioctl(MTEOM) function.
Then Bacula uses the ioctl(MTIOCGET) function to retrieve the current file position from the
mt_fileno field. Some SCSI tape drivers will use a fast means of seeking to the end of the
medium and in doing so, they will not know the current file position and hence return a −1. As a
consequence, if you get "This is NOT correct!" in the positioning tests, this may be the cause.
You must correct this condition in order for Bacula to work.

There are two possible solutions to the above problem of incorrect file number:

Figure out how to configure your SCSI driver to keep track of the file position during the
MTEOM request. This is the preferred solution.

•

Modify the Device resource of your bacula−sd.conf file to include:•

Hardware End of File = no

Bacula Storage Management System

Tips for Resolving Problems 240

This will cause Bacula to use the MTFSF request to seek to the end of the medium, and Bacula
will keep track of the file number itself.

Incorrect Number of Blocks

Bacula's preferred method of working with tape drives (sequential devices) is to run in variable
block mode. All modern tape drives support this mode, but some older drives (in particular the
QIC drives) as well as the ATAPI ide−scsi driver run only in fixed block mode.

Even in variable block mode, with the exception of the first record on the second or subsequent
volume of a multi−volume backup, Bacula will write blocks of a fixed size. However, in reading
a tape, Bacula will assume that for each read request, exactly one block from the tape will be
transferred. This the most common way that tape drives work and is well supported by Bacula.

Drives that run in fixed block mode can cause serious problems for Bacula if the drive's block
size does not correspond exactly to Bacula's block size. In fixed block size mode, drivers may
transmit a partial block or multiple blocks for a single read request. From Bacula's point of view,
this destroys the concept of tape blocks. In order for Bacula to run in fixed block mode, you
must include the following records in the Storage daemon's Device resource definition:

Minimum Block Size = nnn
Maximum Block Size = nnn

where nnn must be the same for both records and must be identical to the driver's fixed block
size.

We recommend that you avoid this configuration if at all possible. In any case, as of version
1.27, it is not at all clear that Bacula's handling of these fixed block drivers really works.

Ensuring that the Tape Modes Are Properly Set −− Linux Only

If you have a modern SCSI tape drive and you are having problems with the test command as
noted above, it may be that some program has set one or more of the your SCSI driver's options
to non−default values. For example, if your driver is set to work in SysV manner, Bacula will not
work correctly because it expects BSD behavior. To reset your tape drive to the default values,
you can try the following, but ONLY if you have a SCSI tape drive on a Linux system:

become super user
mt −f /dev/nst0 rewind
mt −f /dev/nst0 stoptions buffer−writes async−writes read−ahead

The above commands will clear all options and then set those specified. None of the specified
options are required by Bacula, but a number of other options such as SysV behavior must not be
set. On systems other than Linux, you will need to consult your mt man pages or documentation
to figure out how to do the same thing. This should not really be necessary though −− for
example, on both Linux and Solaris systems, the default tape driver options are compatible with
Bacula.

Bacula Storage Management System

Incorrect Number of Blocks 241

Checking and Setting Tape Hardware Compression

As far as I can tell, there is no way with the mt program to check if your tape hardware
compression is turned on or off. You can, however, turn it on by using (on Linux):

become super user
mt −f /dev/nst0 defcompression 1

and of course, if you use a zero instead of the one at the end, you will turn it off. You may also
want to ensure that no prior program has set the default block size, as happened to Stev Allam,
by explicitly turning it off with:

mt −f /dev/nst0 defblksize 0

If you have built the mtx program in the depkgs package, you can use tapeinfo to get quite a bit
of information about your tape drive even if it is not an autochanger. For example on my DDS−4
drive, I get the following:

./tapeinfo −f /dev/sg0
Product Type: Tape Drive
Vendor ID: 'HP '
Product ID: 'C5713A '
Revision: 'H107'
Attached Changer: No
MinBlock:1
MaxBlock:16777215
SCSI ID: 5
SCSI LUN: 0
Ready: yes
BufferedMode: yes
Medium Type: Not Loaded
Density Code: 0x26
BlockSize: 0
DataCompEnabled: yes
DataCompCapable: yes
DataDeCompEnabled: yes
CompType: 0x20
DeCompType: 0x0
Block Position: 1141

where the DataCompEnabled: yes means that tape hardware compression is turned on. You can
see it turn on and off (yes/no) by using the mt commands given above. Also, this output will tell
you if the MinBlock and MaxBlock are set for a particular block size. Note, Bacula will normally
attempt to write blocks of 64,512 bytes, except the last block of the job which will generally be
shorter. If your tape drive requires fixed block sizes (very unusual), you can use the following
records:

Minimum Block Size = nnn
Maximum Block Size = nnn

in your Storage daemon's Device resource to force Bacula to write fixed size blocks (where you
sent nnn to be the same for both of the above records)

Bacula Storage Management System

Checking and Setting Tape Hardware Compression 242

Tape Modes on FreeBSD

Normally Bacula should run with: mt −f /dev/nsa0 seteotmodel 2, and then according to what
the btape test command returns, you will probably need to set the following:

Hardware End of Medium = no
BSF at EOM = yes

but you should start the test command without these records and then add them if it requests you
to do so. Normally, you will also want mt −f /dev/nsa0 comp on to be set.

Using btape to Simulate Bacula Filling a Tape

Because there are often problems with certain tape drives or systems when end of tape conditions
occur, btape has a special command fill that causes it to write random data to a tape until the
tape fills. It then writes at least one more Bacula block to a second tape. Finally, it reads back
both tapes to ensure that the data has been written in a way that Bacula can recover it.

This can be an extremely time consuming process (here is is about 6 hours), and you must have
two blank tapes available. As this command is completely new, it is not well tested, and has
considerable room for improvement, especially during the error checking in the read−back phase.

To begin this test, you enter the fill command and follow the instructions.

Tape Blocking Modes

SCSI tapes may either be written in variable or fixed block sizes. Newer drives support both
modes, but some drives such as the QIC devices always use fixed block sizes. Bacula attempts to
fill and write complete blocks (default 65K), so that in normal mode (variable block size), Bacula
will always write blocks of the same size except the last block of a Job. If Bacula is configured to
write fixed block sizes, it will pad the last block of the Job to the correct size. Bacula expects
variable tape block size drives to behave as follows: Each write to the drive results in a single
record being written to the tape. Each read returns a single record. If you request less byte than
are in the record, only those number of bytes will be returned, but the entire logical record will
have been read (the next read will retrieve the next record). Thus data from a single write is
always returned in a single read, and sequentially written records are returned by sequential
reads.

Bacula expects fixed block size tape drives to behave as follows: If a write length is greater than
the physical block size of the drive, the write will be written as two blocks each of the fixed
physical size. This a single write may become multiple physical records on the tape. (This is not
a good situation). According to the documentation, one may never write an amount of data that is
not the exact multiple of the blocksize (it is not specified if an error occurs or if the the last
record is padded). When reading, it is my understanding that each read request reads one
physical record from the tape. Due to the complications of fixed block size tape drives, you
should avoid them if possible with Bacula, or you must be ABSOLUTELY certain that you use
fixed block sizes within Bacula that correspond to the physical block size of the tape drive. This
will ensure that Bacula has a one to one correspondence between what it writes and the physical
record on the tape.

Bacula Storage Management System

Tape Modes on FreeBSD 243

Please note that Bacula will not function correctly if it writes a block and that block is split into
two or more physical records on the tape. Bacula assumes that each write causes a single record
to be written, and that it can sequentially recover each of the blocks it has written by using the
same number of sequential reads as it had written.

Utility Programs Index When Bacula crashes (Kaboom)

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 18

Tape Testing Index Win32 Implementation

Bacula Storage Management System

Tape Modes on FreeBSD 244

http://www.bacula.org/

What To Do When Bacula Crashes (Kaboom)
If you are running on a Linux system, and you have a set of working configuration files, it is very
unlikely that Bacula will crash. As with all software, however, it is inevitable that someday, it
may crash, particularly if you are running on another operating system or using a new or unusual
feature.

This chapter explains what you should do if one of the three Bacula daemons (Director, File,
Storage) crashes.

Traceback

Each of the three Bacula daemons has a built−in exception handler which, in case of an error,
will attempt to produce a traceback. If successful the traceback will be emailed to you.

For this to work, you need to ensure that a few things are setup correctly on your system:

You must have an installed copy of gdb (the GNU debugger), and it must be on
Bacula's path.

1.

The Bacula installed script file btraceback must be in the same directory as the daemon
which dies, and it must be marked as executable.

2.

The script file btraceback.gdb must have the correct path to it specified in the
btraceback file.

3.

You must have a mail program which is on Bacula's path.4.

If all the above conditions are met, the daemon that crashes will produce a traceback report and
email it to you. If the above conditions are not true, you may be able to correct them by editing
the btraceback file. In doing so, you can add a correct path to the gdb program, correct the path
to the btraceback.gdb file, change the mail program or its path, or change your email address.
The key line in the btraceback file is:

gdb −quiet −batch −x /home/kern/bacula/bin/btraceback.gdb \
 $1 $2 2>1| mail −s "Bacula traceback" your−address@xxx.com

Since each daemon has the same traceback code, a single btraceback file is sufficient if you are
running more than one daemon on a machine.

Testing The Traceback

To "manually" test the traceback feature, you simply start Bacula then obtain the PID of the
main daemon thread (there are multiple threads). Unfortunately, the output had to be split to fit
on this page:

[kern@rufus kern]$ ps fax −−columns 132 | grep bacula−dir
 2103 ? S 0:00 /home/kern/bacula/k/src/dird/bacula−dir −c
 /home/kern/bacula/k/src/dird/dird.conf
 2104 ? S 0:00 _ /home/kern/bacula/k/src/dird/bacula−dir −c
 /home/kern/bacula/k/src/dird/dird.conf
 2106 ? S 0:00 _ /home/kern/bacula/k/src/dird/bacula−dir −c
 /home/kern/bacula/k/src/dird/dird.conf
 2105 ? S 0:00 _ /home/kern/bacula/k/src/dird/bacula−dir −c

What To Do When Bacula Crashes (Kaboom) 245

 /home/kern/bacula/k/src/dird/dird.conf

which in this case is 2103. Then while Bacula is running, you call the program giving it the path
to the Bacula executable and the PID. In this case, it is:

./btraceback /home/kern/bacula/k/src/dird 2103

It should produce an email showing you the current state of the daemon (in this case the
Director), and then exit leaving Bacula running as if nothing happened. If this is not the case,
you will need to correct the problem by modifying the btraceback script.

Typical problems might be that gdb is not on the default path. Fix this by specifying the full path
to it in the btraceback file. Another common problem is that the mail program doesn't work or
is not on the default path. On some systems, it is preferable to use Mail rather than mail.

Getting A Traceback On Other Systems

It should be possible to produce a similar traceback on systems other than Linux, either using
gdb or some other debugger. Solaris with gdb loaded works quite fine. On other systems, you
will need to modify the btraceback program to invoke the correct debugger, and possibly correct
the btraceback.gdb script to have appropriate commands for your debugger. If anyone succeeds
in making this work with another debugger, please send us a copy of what you modified.

Manually Running Bacula Under The Debugger

If for some reason you cannot get the automatic traceback, or if you want to interactively
examine the variable contents after a crash, you can run Bacula under the debugger. Assuming
you want to run the Storage daemon under the debugger, you would do the following:

Start the Director and the File daemon. If the Storage daemon also starts, you will need
to find its PID as shown above (ps fax | grep bacula−sd) and kill it with a command like
the following:

1.

 kill −15 PID

where you replace PID by the actual value.
At this point, the Director and the File daemon should be running but the Storage
daemon should not.

2.

cd to the directory containing the Storage daemon3.
Start the Storage daemon under the debugger:4.

 gdb ./bacula−sd

Run the Storage daemon:5.

 run −s −f −c ./bacula−sd.conf

You may replace the ./bacula−sd.conf with the full path to the Storage daemon's
configuration file.

Bacula Storage Management System

Getting A Traceback On Other Systems 246

At this point, Bacula will be fully operational.6.
In another shell command window, start the Console program and do what is necessary
to cause Bacula to die.

7.

When Bacula crashes, the gdb shell window will become active and gdb will show you
the error that occurred.

8.

To get a general traceback of all threads, issue the following command:9.

 thread apply all bt

After that you can issue any debugging command.

Tape Testing Index Win32 Implementation

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 19

What to do when Bacula crashes
(Kaboom)

Index Using Bacula to Improve Computer
Security

Bacula Storage Management System

Getting A Traceback On Other Systems 247

http://www.bacula.org/

The Windows Version of Bacula

General

At the current time only the File daemon or Client program has been tested on Windows. As a
consequence, when we speak of the Windows version of Bacula below, we are referring to the
File daemon only.

The Windows version of the Bacula File daemon has been tested on Win98, WinMe, WinNT,
and Win2000 systems. We have coded to support Win95, but no longer have a system for testing.
The Windows version of Bacula has been built to run under the CYGWIN environment, which
provides many of the features of Unix on Windows systems. It also permitted a rapid port with
very few source code changes, which means that the Windows version is for the most part
running code that has long proved stable on Unix systems. Even though the Win32 version of
Bacula is a port that relies on many Unix features, it is just the same a true Windows program.
When running, it is perfectly integrated with Windows and displays its icon in the system icon
tray, and provides a system tray menu to obtain additional information on how Bacula is running
(status and events dialog boxes). If so desired, it can also be stopped by using the system tray
menu, though this should normally never be necessary.

Once installed Bacula normally runs as a system service. This means that it is immediately
started by the operating system when the system is booted, and runs in the background even if
there is no user logged into the system.

Installation

Normally, you will install the Windows version of Bacula from the binaries. This install is
somewhat Unix like since you do some parts of the installation by hand. To install the binaries,
you need WinZip.

Simply double click on the winbacula−1.xx.0.tar.gz icon. The actual name of the icon
will vary from one release version to another.

•

When Zip says that it has one file and asks if it should unpack it into a temporary file,
respond with Yes.

•

The Windows Version of Bacula 248

You will then be presented with a WinZip dialog that should look something like the
following:

•

Ensure that you extract all files and that the extraction will go into c:\•

Bacula Storage Management System

The Windows Version of Bacula 249

If you have installed CYGWIN on your system (very few of you have), you should
install Bacula into the c:\cygwin directory rather than c:\ as indicated above for a
non−CYGWIN installation. This is also true if you installed CYGWIN a long time ago,
unless you were careful to remove the CYGWIN mount points.

•

Even though Bacula uses the cygwin1.dll file, it needs no other part of CYGWIN
installed.

If you wish to install the package elsewhere, please note that you will need to proceed with a
manual installation, which is not particularly easy as you must rebuild the source and change the
configuration file as well.

This installation assumes that you do not have and never had CYGWIN installed on your
computer. If you do, you will need to take care to observe the minor differences to the standard
installation that we will note in this text. If you have CYGWIN installed on your system and you
use the standard installation scripts rather than the CYGWIN specific scripts mentioned below,
they will remove your mount points (automatically setup by the CYGWIN installation) and
CYGWIN will no longer work until it is re−installed.

Once you have unzipped the binaries, open a window pointing to the binary installation folder
(normally c:\bacula). This folder should contain additional folders such as bin. (For CYGWIN
installations, this is c:\cygwin\bacula\bin, ...).

Continuing the installation process:

Open the directory c:\bacula\bin\bacula−fd.conf in the Windows Explorer by clicking
on the bacula folder, then on the bin folder. Finally double click on the file
bacula−fd.conf and edit it to contain the values appropriate for your site. In most cases,
no changes will be needed, but you probably should change the name to be something
unique on your system so that you can easily distinguish messages coming from different
daemons. To make the conf file more general, we have not supplied the drive letter (e.g.
c:) for the WorkingDirectory and the Pid Directory paths. You might consider adding
explicit path specifications especially if you have more than one hard disk or more than
one partition.

•

To do the final step of installation, double click on the Install.bat program. (For
CYGWIN installations use the CygwinInstall.bat program.)

•

Bacula Storage Management System

The Windows Version of Bacula 250

This script will setup the appropriate mount points for the directories that Bacula uses, it
will install Bacula in the system registry.

If everything went well, you will get something similar to the following output in a DOS
shell window:

What is important to verify in the DOS window is that the root directory \ is mounted on
device c:\. (Ignore this on CYGWIN installations).

The DOS window will be followed immediately by a Windows dialog box as follows:

Bacula Storage Management System

The Windows Version of Bacula 251

On Windows 98, Windows 95, or Windows Me, to actually start the service, either
reboot the machine, which is not necessary, or double click on the Start icon in the
c:\bacula\bin folder (c:\cygwin\bacula\bin on CYGWIN)

•

On Windows NT, Windows 2000, or Windows XP, to start the service, either reboot the
machine, which is not necessary, or go to the Control Panel, open the Services folder and
start the Bacula Service by selecting the Bacula File Server:

•

Please ensure that the service can interact with the desktop. To do so, click on the Sartup...
button, and you should have something similar to the following (note, on WinXP systems the
dialogs are significantly different, but in general have the same information):

Bacula Storage Management System

The Windows Version of Bacula 252

 That should complete the

installation process. When the Bacula File Server is ready to serve files, an icon representing
a cassette (or tape) will appear in the system tray; right click on it and a menu will appear. Select
the Events item, and the Events dialog box should appear. There should be no error messages.
By right clicking again on the system tray cassette icon and selecting the Status item, you can
verify whether any jobs are running or not.

When the Bacula File Server begins saving files, the color of the holes in the cassette icon will
change from white to green , and if there is an error, the holes in the cassette icon will change
to red .

Installation Directory

The Win32 version of Bacula must reside in the c:\bacula\ directory, and there must be a c:\tmp
directory on your machine. The installation will do this automatically, and we recommend that
you do not attempt to place Bacula in another directory. If you do so, you are on your own, and
you will need to do a rebuild of the source. Note, on systems with Cygwin installed, Bacula
should reside in c:\cygwin\bacula.

Upgrading

On Win98 systems, to upgrade to a new release, simply stop Bacula by using the tray icon and
selecting the Close Bacula menu item, or by double clicking on the Stop icon located in the
c:\bacula\bin directory, then apply the upgrade and restart Bacula.

On WinNT, WinXP, and Win2K systems, you may stop Bacula as indicated above or
alternatively you may stop Bacula by using the Services item in the Control Panel. Then to
restart Bacula after the new files have been loaded, go to the Services dialog as shown above in
the installation instructions and click on Start. On WinXP systems, the Services dialog is a bit

Bacula Storage Management System

Installation Directory 253

different and is found by following: Control Panel −> Administrative Tools −> Component
Services. Then click on Services (Local) in the left hand menu window and the services should
appear in the right hand window, from which point, you can select Bacula and start it.

Post Installation

After installing Bacula and before running it, you should check the contents of
c:\bacula\bin\bacula−fd.conf to ensure that it corresponds to your configuration.

Dealing with Problems

The most likely source of problems is authentication when the Director attempts to connect to the
File daemon that you installed. This can occur if the names and the passwords defined in the File
daemon's configuration file c:\bacula\bin\bacula−fd.conf on the Windows machine do not
match with the names and the passwords in the Director's configuration file bacula−dir.conf
located on your Unix/Linux server.

More specifically, the password found in the Client resource in the Director's configuration file
must be the same as the password in the Director resource of the File daemon's configuration
file. In addition, the name of the Director resource in the File daemon's configuration file must
be the same as the name in the Director resource of the Director's configuration file.

It is a bit hard to explain in words, but if you understand that a Director normally has multiple
Clients and a Client (or File daemon) may permit access by multiple Directors, you can see that
the names and the passwords on both sides must match for proper authentication.

One user had serious problems with the configuration file until he realized that the Unix end of
line conventions were used and Bacula wanted them in Windows format. This has not been
confirmed though.

Running Unix like programs on Windows machines is a bit frustrating because the Windows
command line shell (DOS Window) is rather primitive. As a consequence, it is not generally
possible to see the debug information and certain error messages that Bacula prints. With a bit of
work, however, it is possible. When everything else fails and you want to see what is going on,
try the following:

 Start a DOS shell Window.

 cd c:\bacula\bin
 bacula−fd −t >out
 type out

The −t option will cause Bacula to read the configuration file, print any error messages and then
exit. the > redirects the output to the file named out, which you can list with the type command.

If something is going wrong later, or you want to run Bacula with a debug option, you might try
starting it as:

 bacula−fd −d 100 >out

In this case, Bacula will run until you explicitly stop it, which will give you a chance to connect

Bacula Storage Management System

Post Installation 254

to it from your Unix/Linux server.

In addition, you should look in the System Applications log on the Control Panel to find any
Windows errors that Bacula got during the startup process.

Windows Compatibility Considerations

In Bacula versions 1.30 and earlier, we used the Cygwin emulation of Unix open(), read(),
write(), ... calls to access files. This worked pretty well for Win95, Win98, and WinMe systems,
but not very well for the other systems (NT/2K/XP) because those systems have special security
and ownership information that was not saved. In addition on the NT/2K/XP systems, older
versions of Bacula were not always able to access all files due to system permissions restrictions.

As a consequence, in Bacula version 1.31 and later, we use Windows backup API calls by
default. Typical of Windows, programming these special BackupRead and BackupWrite calls is
a real nightmare of complications. The end result gives some distinct advantages and some
disadvantages.

First, the advantages are that on WinNT/2K/XP systems, the security and ownership information
is now backed up. In addition, with the exception of files in use by another program (a major
disaster for backup programs on Windows), Bacula can now access all system files. This means
that when you restore files, the security and ownership information will be restored on
WinNT/2K/XP along with the data.

The disadvantage of the Windows backup API calls is that it produces non−portable backups.
That is files that are backed up on WinNT using the native API calls (BackupRead/BackupWrite)
cannot be restored on Win95/98/Me or Unix systems. In principle, a file backed up on WinNT
can be restored on WinXP, but this remains to be seen in practice (not yet tested).

As a default, Bacula backs up Windows systems using the Windows API calls. If you want to
backup data on a WinNT/2K/XP system and restore it on a Unix/Win95/98/Me system, we have
provided a special portable option that backups the data in a portable fashion by using portable
API calls. See the portable option on the Include statement in a FileSet resource in the Director's
configuration chapter for the details on setting this option. However, using the portable option
means you may have permissions problems accessing files, and none of the security and
ownership information will be backed up or restored.

You should always be able to restore any file backed up on Unix or Win95/98/Me to any other
system. On some systems, such as WinNT/2K/XP, you may have to reset the ownership of such
restored files. Any file backed up on WinNT/2K/XP should in principle be able to be restored to
a similar system (i.e. WinNT/2K/XP), however, I am unsure of the consequences if the owner
information and accounts are not identical on both systems. Bacula will not let you restore files
backed up on WinNT/2K/XP to any other system (i.e. Unix Win95/98/Me) if you have used the
defaults.

Finally, if you specify the portable=yes option on the files you back up. Bacula will be able to
restore them on any other system. However, any WinNT/2K/XP specific security and ownership
information will be lost.

The following matrix will give you an idea of what you can expect. Thanks to Marc Brueckner
for doing the tests:

Bacula Storage Management System

Windows Compatibility Considerations 255

Backup OS Restore OS Results

WinMe WinMe Works

WinMe WinNT Works (SYSTEM permissions)

WinMe WinXP Works (SYSTEM permissions)

WinMe Linux Works (SYSTEM permissions)

WinXP WinXP Works

WinXP WinNT Works (all files OK, but got "The data is invalid" message)

WinXP WinMe
Error: Win32 data stream not supported.

WinXP WinMe Works if Portable=yes specified during backup.

WinXP Linux
Error: Win32 data stream not supported.

WinXP Linux Works if Portable=yes specified during backup.

WinNT WinNT Works

WinNT WinXP Works

WinNT WinMe Error: Win32 data stream not supported.

WinNT WinMe Works if Portable=yes specified during backup.

WinNT Linux Error: Win32 data stream not supported.

WinNT Linux Works if Portable=yes specified during backup.

Linux Linux Works

Linux WinNT Works (SYSTEM permissions)

Linux WinMe Works

Linux WinXP Works (SYSTEM permissions)

Utility Functions

The directory c:\Bacula\bin contains six utility routines (actually .pif files) that you may find
useful. They are:

Bacula Storage Management System

Utility Functions 256

Start
Stop
Install
Uninstall
CygwinInstall
CygwinUnInstall

Any of these utilities may be used on any system, with the exception of the Start utility, which
cannot be used on WinNT, Win2000 and WinXP systems. On those systems, the Bacula service
must always be started through the Services sub−dialog of the Control Panel.

The Install and Uninstall utilities install and uninstall Bacula from the system registry only. All
other pieces (files) of Bacula remain intact. It is not absolutely necessary for Bacula to be
installed in the registry as it can run as a regular program. However, if it is not installed in the
registry, it cannot be run as a service.

The Console Program

The Bacula Console program has been included in the distribution in the Bacula bin directory.
You can execute it from any Windows DOS box. Using this program, you can start a job on the
main server (Director) from your Windows workstation.

The testfind Program

A program named testfind is also included in the Bacula bin directory. This program is
documented in the testfind section of the Utility Tools chapter of this manual. It permits you to
list the files that will be backed up given the list of Include statements from your Director's
configuration file. Note, the important functionality of this program (i.e. listing the files to be
backed up) can be obtained by using the estimate command in the Console program.

Command Line Options Specific to the Windows Version

These options are not normally seen or used by the user, and are documented here only for
information purposes. At the current time, to change the default options, you must either
manually run Bacula or you must manually edit the system registry and modify the appropriate
entries.

In order to avoid option clashes between the options necessary for Bacula to run on Windows
and the standard Bacula options, all Windows specific options are signaled with a forward slash
character (/), while as usual, the standard Bacula options are signaled with a minus (−), or a
minus minus (−−). All the standard Bacula options can be used on the Windows version. In
addition, the following Windows only options are implemented:

/servicehelper
Run the service helper application

/service
Start Bacula as a service

/run
Run the Bacula application

/install
Install Bacula as a service in the system registry

Bacula Storage Management System

The Console Program 257

/remove
Uninstall Bacula from the system registry

/about
Show the Bacula about dialogue box

/status
Show the Bacula status dialogue box

/events
Show the Bacula events dialogue box (not yet implemented)

/kill
Stop any running Bacula

/help
Show the Bacula help dialogue box

It is important to note that under normal circumstances the user should never need to use these
options as they are normally handled by the system automatically once Bacula is installed.
However, you may note these options in some of the .pif and .bat files that have been created for
your use.

Building the Win32 Version from the Source

If you have the source code, follow the standard procedures for building Bacula on Unix in the
Installation Section of this manual. Please don't forget to look at the Win32 specific instructions.

What to do when Bacula crashes
(Kaboom)

Index Using Bacula to Improve Computer
Security

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 20

Win32 Implementation Index Restoring Files with a Bootstrap File

Bacula Storage Management System

Building the Win32 Version from the Source 258

http://www.bacula.org/

Using Bacula to Improve Computer Security
Since Bacula maintains a catalog of files, their attributes, and either SHA1 or MD5 signatures, it
can be an ideal tool for improving computer security. This is done by making a snapshot of your
system files with a Verify Job and then checking the current state of your system against the
snapshot, on a regular basis (e.g. nightly).

The first step is to set up a Verify Job and to run it with:

Level = InitCatalog

The InitCatalog level tells Bacula simply get the information on the specified files and to put it
into the catalog. That is your database is initialized and no comparison is done. The InitCatalog
is normally run one time manually.

Thereafter, you will run a Verify Job on a daily (or whatever) basis with:

Level = Catalog

The Level = Catalog level tells Bacula to compare the current state of the files on the Client to
the last InitCatalog that is stored in the catalog and to report any differences. See the example
below for the format of the output.

You decide what files you want to form your "snapshot" by specifying them in a FileSet
resource, and normally, they will be system files that do not change, or that only certain features
change.

Then you decide what attributes of each file you want compared by specifying comparison
options on the Include statements that you use in the FileSet resource of your Catalog Jobs.

The Details

In the discussion that follows, we will make reference to the Verify Configuration Example that
is included below in the A Verify Configuration Example section. You might want to look it
over now to get an idea of what it does.

The main elements consist of adding a schedule, which will normally be run daily, or perhaps
more often. This is provided by the VerifyCycle Schedule, which runs at 5:05 in the morning
every day.

Then you must define a Job, much as is done below. We recommend that the Job name contain
the name of your machine as well as the word Verify or Check. In our example, we named it
MatouVerify. This will permit you to easily identify your job when running it from the Console.

You will notice that most records of the Job are quite standard, but that the FileSet resource
contains verify=pins1 option in addition to the standard signature=SHA1 option. If you don't
want SHA1 signature comparison, and we cannot imagine why not, you can drop the
signature=SHA1 and none will be computed nor stored in the catalog. Or alternatively, you can
use verify=pins5 and signature=MD5, which will use the MD5 hash algorithm. The MD5 hash
computes faster than SHA1, but is cryptographically less secure.

Using Bacula to Improve Computer Security 259

The verify=pins1 is ignored during the InitCatalog Job, but is used during the subsequent
Catalog Jobs to specify what attributes of the files should be compared to those found in the
catalog. pins1 is a reasonable set to begin with, but you may want to look at the details these and
other options. They can be found in the FileSet Resource section of this manual. Briefly,
however, the p of the pins1 tells Verify to compare the permissions bits, the i is to compare
inodes, the n causes comparison of the number of links, the s compares the file size, and the 1
compares the SHA1 checksums (this requires the signature=SHA1 option to have been set also).

You must also specify the Client and the Catalog resources for your Verify job, but you
probably already have them created for your client and do not need to recreate them, they are
included in the example below for completeness.

As mentioned above, you will need to have a FileSet resource for the Verify job, which will have
the additional verify=pins1 option. You will want to take some care in defining the list of files to
be included in your FileSet. Basically, you will want to include all system (or other) files that
should not change on your system. If you select files, such as log files or mail files, which are
constantly changing, your automatic Verify job will be constantly finding differences. The
objective in forming the FileSet is to choose all unchanging important system files. Then if any
of those files has changed, you will be notified, and you can determine if it changed because you
loaded a new package, or because someone has broken into your computer and modified your
files. The example below shows a list of files that I use on my RedHat 7.3 system. Since I didn't
spend a lot of time working on it, it probably is missing a few important files (if you find one,
please send it to me). On the other hand, as long as I don't load any new packages, none of these
files change during normal operation of the system.

Running the Verify

The first thing you will want to do is to run an InitCatalog level Verify Job. This will initialize
the catalog to contain the file information that will later be used as a basis for comparisons with
the actual file system, thus allowing you to detect any changes (and possible intrusions into your
system).

The easiest way to run the InitCatalog is manually with the console program by simply entering
run. You will be presented with a list of Jobs that can be run, and you will choose the one that
corresponds to your Verify Job, MatouVerify in this example.

The defined Job resources are:
 1: MatouVerify
 2: kernsrestore
 3: Filetest
 4: kernsave
Select Job resource (1−4): 1

Next, the console program will show you the basic parameters of the Job and ask you:

Run Verify job
JobName: MatouVerify
FileSet: Verify Set
Level: Catalog
Client: MatouVerify
Storage: DLTDrive
OK to run? (yes/mod/no): mod

Bacula Storage Management System

Running the Verify 260

Here, you want to respond mod to modify the parameters because the Level is by default set to
Catalog and we want to run an InitCatalog Job. After responding mod, the console will ask:

Parameters to modify:
 1: Job
 2: Level
 3: FileSet
 4: Client
 5: Storage
Select parameter to modify (1−5): 2

you should select number 2 to modify the Level, and it will display:

Levels:
 1: Initialize Catalog
 2: Verify from Catalog
 3: Verify Volume
 4: Verify Volume Data
Select level (1−4): 1

Choose item 1, and you will see the final display:

Run Verify job
JobName: MatouVerify
FileSet: Verify Set
Level: Initcatalog
Client: MatouVerify
Storage: DLTDrive
OK to run? (yes/mod/no): yes

at which point you respond yes, and the Job will begin.

There after the Job will automatically start according to the schedule you have defined. If you
wish to immediately verify it, you can simply run a Verify Catalog which will be the default. No
differences should be found.

What To Do When Differences Are Found

If you have setup your messages correctly, you should be notified if there are any differences and
exactly what they are. For example, below is the email received after doing an update of
OpenSSH:

HeadMan: Start Verify JobId 83 Job=RufusVerify.2002−06−25.21:41:05
HeadMan: Verifying against Init JobId 70 run 2002−06−21 18:58:51
HeadMan: File: /etc/pam.d/sshd
HeadMan: st_ino differ. Cat: 4674b File: 46765
HeadMan: File: /etc/rc.d/init.d/sshd
HeadMan: st_ino differ. Cat: 56230 File: 56231
HeadMan: File: /etc/ssh/ssh_config
HeadMan: st_ino differ. Cat: 81317 File: 8131b
HeadMan: st_size differ. Cat: 1202 File: 1297
HeadMan: SHA1 differs.
HeadMan: File: /etc/ssh/sshd_config
HeadMan: st_ino differ. Cat: 81398 File: 81325
HeadMan: st_size differ. Cat: 1182 File: 1579
HeadMan: SHA1 differs.

Bacula Storage Management System

What To Do When Differences Are Found 261

HeadMan: File: /etc/ssh/ssh_config.rpmnew
HeadMan: st_ino differ. Cat: 812dd File: 812b3
HeadMan: st_size differ. Cat: 1167 File: 1114
HeadMan: SHA1 differs.
HeadMan: File: /etc/ssh/sshd_config.rpmnew
HeadMan: st_ino differ. Cat: 81397 File: 812dd
HeadMan: st_size differ. Cat: 2528 File: 2407
HeadMan: SHA1 differs.
HeadMan: File: /etc/ssh/moduli
HeadMan: st_ino differ. Cat: 812b3 File: 812ab
HeadMan: File: /usr/bin/scp
HeadMan: st_ino differ. Cat: 5e07e File: 5e343
HeadMan: st_size differ. Cat: 26728 File: 26952
HeadMan: SHA1 differs.
HeadMan: File: /usr/bin/ssh−keygen
HeadMan: st_ino differ. Cat: 5df1d File: 5e07e
HeadMan: st_size differ. Cat: 80488 File: 84648
HeadMan: SHA1 differs.
HeadMan: File: /usr/bin/sftp
HeadMan: st_ino differ. Cat: 5e2e8 File: 5df1d
HeadMan: st_size differ. Cat: 46952 File: 46984
HeadMan: SHA1 differs.
HeadMan: File: /usr/bin/slogin
HeadMan: st_ino differ. Cat: 5e359 File: 5e2e8
HeadMan: File: /usr/bin/ssh
HeadMan: st_mode differ. Cat: 89ed File: 81ed
HeadMan: st_ino differ. Cat: 5e35a File: 5e359
HeadMan: st_size differ. Cat: 219932 File: 234440
HeadMan: SHA1 differs.
HeadMan: File: /usr/bin/ssh−add
HeadMan: st_ino differ. Cat: 5e35b File: 5e35a
HeadMan: st_size differ. Cat: 76328 File: 81448
HeadMan: SHA1 differs.
HeadMan: File: /usr/bin/ssh−agent
HeadMan: st_ino differ. Cat: 5e35c File: 5e35b
HeadMan: st_size differ. Cat: 43208 File: 47368
HeadMan: SHA1 differs.
HeadMan: File: /usr/bin/ssh−keyscan
HeadMan: st_ino differ. Cat: 5e35d File: 5e96a
HeadMan: st_size differ. Cat: 139272 File: 151560
HeadMan: SHA1 differs.
HeadMan: 25−Jun−2002 21:41
JobId: 83
Job: RufusVerify.2002−06−25.21:41:05
FileSet: Verify Set
Verify Level: Catalog
Client: RufusVerify
Start time: 25−Jun−2002 21:41
End time: 25−Jun−2002 21:41
Files Examined: 4,258
Termination: Verify Differences

At this point, it was obvious that these files were modified during installation of the RPMs. If
you want to be super safe, you should run a Verify Level=Catalog immediately before installing
new software to verify that there are no differences, then run a Verify Level=InitCatalog
immediately after the installation.

To keep the above email from being sent every night when the Verify Job runs, we simply re−run
the Verify Job setting the level to InitCatalog (as we did above in the very beginning). This will

Bacula Storage Management System

What To Do When Differences Are Found 262

re−establish the current state of the system as your new basis for future comparisons. Take care
that you don't do an InitCatalog after someone has placed a Trojan horse on your system!

If you have included in your FileSet a file that is changed by the normal operation of your
system, you will get false matches, and you will need to modify the FileSet to exclude that file
(or not to Include it), and then re−run the InitCatalog.

The FileSet that is show below is what I use on my RedHat 7.3 system. With a bit more thought,
you can probably add quite a number of additional files that should be monitored.

A Verify Configuration Example

Schedule {
 Name = "VerifyCycle"
 Run = Level=Catalog sun−sat at 5:05
}

Job {
 Name = "MatouVerify"
 Type = Verify
 Level = Catalog # default level
 Client = MatouVerify
 FileSet = "Verify Set"
 Messages = Standard
 Storage = DLTDrive
 Pool = Default
 Schedule = "VerifyCycle"
}
#
The list of files in this FileSet should be carefully
chosen. This is a good starting point.
#
FileSet {
 Name = "Verify Set"
 Include = verify=pins1 signature=SHA1 {
 /boot
 /bin
 /sbin
 /usr/bin
 /lib
 /root/.ssh
 /home/kern/.ssh
 /var/named
 /etc/sysconfig
 /etc/ssh
 /etc/security
 /etc/exports
 /etc/rc.d/init.d
 /etc/sendmail.cf
 /etc/sysctl.conf
 /etc/services
 /etc/xinetd.d
 /etc/hosts.allow
 /etc/hosts.deny
 /etc/hosts
 /etc/modules.conf
 /etc/named.conf
 /etc/pam.d

Bacula Storage Management System

A Verify Configuration Example 263

 /etc/resolv.conf
 }
 Exclude = { }
}

Client {
 Name = MatouVerify
 Address = lmatou
 Catalog = Bacula
 Password = ""
 File Retention = 80d # 80 days
 Job Retention = 1y # one year
 AutoPrune = yes # Prune expired Jobs/Files
}

Catalog {
 Name = Bacula
 dbname = verify; user = bacula; password = ""
}

Win32 Implementation Index Restoring Files with a Bootstrap File

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 21

Using Bacula to Improve Your System
Security

Index Installing and Configuring MySQL

Bacula Storage Management System

A Verify Configuration Example 264

http://www.bacula.org/

The Bootstrap File
The information in this chapter is provided so that you may either create your own bootstrap
files, or so that you can edit a bootstrap file produced by Bacula. However, normally the
bootstrap file will be automatically created for you during the restore command in the Console
program, or by using a Write Bootstrap record in your Backup Jobs, and thus you will never
need to know the details of this file.

The bootstrap file contains ASCII information that permits precise specification of what files
should be restored.

File Format

The general format of a bootstrap file is:

<keyword>= <value>

Where each keyword and the value specify which files to restore. More precisely the keyword
and their values serve to limit which files will be restored and thus act as a filter. The absence of
a keyword means that all records will be accepted.

Blank lines and lines beginning with a pound sign (#) in the bootstrap file are ignored.

There are keywords which permit filtering by Volume, Client, Job, FileIndex, Session Id, Session
Time, ...

The more keywords that are specified, the more selective the specification of which files to
restore will be. In fact, each keyword is ANDed with other keywords that may be present.

For example,

Volume = Test−001
VolSessionId = 1
VolSessionTime = 108927638

directs the Storage daemon (or the bextract program) to restore only those files on Volume
Test−001 AND having VolumeSessionId equal to one AND having VolumeSession time equal to
108927638.

The full set of permitted keywords presented in the order in which they are matched against the
Volume records are:

Volume
The value field specifies what Volume the following commands apply to. Each Volume
specification becomes the current Volume, to which all the following commands apply
until a new current Volume (if any) is specified. If the Volume name contains spaces, it
should be enclosed in quotes.

VolFile
The value is a file number, a list of file numbers, or a range of file numbers numbers to
match on the current Volume. The file number represents the physical file on the

The Bootstrap File 265

Volume where the data is stored. For a tape volume, this record is used to position to the
correct starting file, and once the tape is past the last specified file, reading will stop.

VolBlock
The value is a block number, a list of block numbers, or a range of block numbers
numbers to match on the current Volume. The block number represents the physical
block on the Volume where the data is stored. This record is currently not used.

VolSessionTime
The value specifies a Volume Session Time to be matched from the current volume.

VolSessionId
The value specifies a VolSessionId, a list of volume session ids, or a range of volume
session ids to be matched from the current Volume. Each VolSessionId and
VolSessionTime pair corresponds to a unique Job that is backed up on the Volume.

*JobId
The value specifies a JobId, list of JobIds, or range of JobIds to be selected from the
current Volume. Note, the JobId may not be unique if you have multiple Directors, or if
you have reinitialized your database. The JobId filter works only if you do not run
multiple simultaneous jobs.

*Job
The value specifies a Job name or list of Job names to be matched on the current
Volume. The Job corresponds to a unique VolSessionId and VolSessionTime pair.
However, the Job is perhaps a bit more readable by humans. Standard regular
expressions (wildcards) may be used to match Job names. The Job filter works only if
you do not run multiple simultaneous jobs.

*Client
The value specifies a Client name or list of Clients to will be matched on the current
Volume. Standard regular expressions (wildcards) may be used to match Client names.
The Client filter works only if you do not run multiple simultaneous jobs.

FileIndex
The value specifies a FileIndex, list of FileIndexes, or range of FileIndexes to be selected
from the current Volume. Each file (data) stored on a Volume within a Session has a
unique FileIndex. For each Session, the first file written is assigned FileIndex equal to
one and incremented for each file backed up.
This for a given Volume, the triple VolSessionId, VolSessionTime, and FileIndex
uniquely identifies a file stored on the Volume. Multiple copies of the same file may be
stored on the same Volume, but for each file, the triple VolSessionId, VolSessionTime,
and FileIndex will be unique. This triple is stored in the Catalog database for each file.

Slot
The value specifies the autochanger slot. There may be only a single Slot specification
for each Volume.

Stream
The value specifies a Stream, a list of Streams, or a range of Streams to be selected from
the current Volume. Unless you really know what you are doing (the internals of Bacula,
you should avoid this specification.

*JobType
Not yet implemented.

*JobLevel
Not yet implemented.

The Volume record is a bit special in that it must be the first record. The other keyword records
may appear in any order and any number following a Volume record.

Bacula Storage Management System

The Bootstrap File 266

Multiple Volume records may be specified in the same bootstrap file, but each one starts a new
set of filter criteria for the Volume.

In processing the bootstrap file within the current Volume, each filter specified by a keyword is
ANDed with the next. Thus,

Volume = Test−01
Client = "My machine"
FileIndex = 1

will match records on Volume Test−01 AND Client records for My machine AND FileIndex
equal to one.

Multiple occurrences of the same record are ORed together. Thus,

Volume = Test−01
Client = "My machine"
Client = "Backup machine"
FileIndex = 1

will match records on Volume Test−01 AND (Client records for My machine OR Backup
machine) AND FileIndex equal to one.

For integer values, you may supply a range or a list, and for all other values except Volumes, you
may specify a list. A list is equivalent to multiple records of the same keyword. For example,

Volume = Test−01
Client = "My machine", "Backup machine"
FileIndex = 1−20, 35

will match records on Volume Test−01 AND (Client records for My machine OR Backup
machine) AND (FileIndex 1 OR 2 OR 3 ... OR 20 OR 35).

As previously mentioned above, there may be multiple Volume records in the same bootstrap
file. Each new Volume definition begins a new set of filter conditions that apply to that Volume
and will be ORed with any other Volume definitions.

As an example, suppose we query for the current set of tapes to restore all files on Client Rufus
using the query command in the console program:

Using default Catalog name=MySQL DB=bacula
*query
Available queries:
 1: List Job totals:
 2: List where a file is saved:
 3: List where the most recent copies of a file are saved:
 4: List total files/bytes by Job:
 5: List total files/bytes by Volume:
 6: List last 10 Full Backups for a Client:
 7: List Volumes used by selected JobId:
 8: List Volumes to Restore All Files:
Choose a query (1−8): 8

Enter Client Name: Rufus
+−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+

Bacula Storage Management System

The Bootstrap File 267

| JobId | StartTime | VolumeName | StartFile | VolSesId | VolSesTime |
+−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+
154	2002−05−30 12:08	test−02	0	1	1022753312
202	2002−06−15 10:16	test−02	0	2	1024128917
203	2002−06−15 11:12	test−02	3	1	1024132350
204	2002−06−18 08:11	test−02	4	1	1024380678
+−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+

The output shows us that there are four Jobs that must be restored. The first one is a Full backup,
and the following three are all Incremental backups.

The following bootstrap file will restore those files:

Volume=test−02
VolSessionId=1
VolSessionTime=1022753312
Volume=test−02
VolSessionId=2
VolSessionTime=1024128917
Volume=test−02
VolSessionId=1
VolSessionTime=1024132350
Volume=test−02
VolSessionId=1
VolSessionTime=1024380678

As a final example, assume that the initial Full save spanned two Volumes. The output from
query might look like:

+−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+
| JobId | StartTime | VolumeName | StartFile | VolSesId | VolSesTime |
+−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+
242	2002−06−25 16:50	File0003	0	1	1025016612
242	2002−06−25 16:50	File0004	0	1	1025016612
243	2002−06−25 16:52	File0005	0	2	1025016612
246	2002−06−25 19:19	File0006	0	2	1025025494
+−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+

and the following bootstrap file would restore those files:

Volume=File0003
VolSessionId=1
VolSessionTime=1025016612
Volume=File0004
VolSessionId=1
VolSessionTime=1025016612
Volume=File0005
VolSessionId=2
VolSessionTime=1025016612
Volume=File0006
VolSessionId=2
VolSessionTime=1025025494

Bacula Storage Management System

The Bootstrap File 268

Using Bacula to Improve Your System
Security

Index Installing and Configuring MySQL

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 22

Restoring Files with a Bootstrap File Index Installing and Configuring SQLite

Bacula Storage Management System

The Bootstrap File 269

http://www.bacula.org/

Installing and Configuring MySQL

Installing and Configuring MySQL −− Phase I

If you use the ./configure −−with−mysql=mysql−directory statement for configuring Bacula, you
will need MySQL version 3.23.33 or later installed in the mysql−directory (we are currently
using 3.23.56). If MySQL is installed in the standard system location, you need only enter
−−with−mysql since the configure program will search all the standard locations. If you install
MySQL in your home directory or some other non−standard directory, you will need to provide
the full path to it.

Installing and Configuring MySQL is not difficult but can be confusing the first time. As a
consequence, below, we list the steps that we used to install it on our machines. Please note that
our configuration leaves MySQL without any user passwords. This may be an undesirable
situation if you have other users on your system.

Please note that as of Bacula version 1.31, the thread safe version of the MySQL client library is
used, and hence you must add the −−enable−thread−safe−client option to the ./configure as
shown below:

Download MySQL source code from www.mysql.com/downloads1.

Detar it with something like:2.

tar xvfz mysql−filename

Note, the above command requires GNU tar. If you do not have GNU tar, a command
such as:

zcat mysql−filename | tar xvf −

will probably accomplish the same thing.

cd mysql−source−directory3.

where you replace mysql−source−directory with the directory name where you put the
MySQL source code.

./configure −−enable−thread−safe−client −−prefix=mysql−directory4.

where you replace mysql−directory with the directory name where you want to install
mysql. Normally for system wide use this is /usr/local/mysql. In my case, I use
~kern/mysql.

make5.

This takes a bit of time.

make install6.

Installing and Configuring MySQL 270

http://www.mysql.com/downloads

This will put all the necessary binaries, libraries and support files into the
mysql−directory that you specified above.

./scripts/mysql_install_db7.

This will create the necessary MySQL databases for controlling user access. Note, this
script can also be found in the bin directory in the installation directory

The MySQL client library mysqlclient requires the gzip compression library libz.a or libz.so. If
you are using rpm packages, these libraries are in the libz−devel package. On Debian systems,
you will need to load the zlib1g−dev package. If you are not using rpms or debs, you will need to
find the appropriate package for your system.

At this point, you should return to completing the installation of Bacula. Later after Bacula is
installed, come back to this chapter to complete the installation. Please note, the installation files
used in the second phase of the MySQL installation are created during the Bacula Installation.

Installing and Configuring MySQL −− Phase II

At this point, you should have built and installed MySQL, or already have a running MySQL,
and you should have configured, built and installed Bacula. If not, please complete these items
before proceeding.

Please note that the ./configure used to build Bacula will need to include
−−with−mysql=mysql−directory, where mysql−directory is the directory name that you
specified on the ./configure command for configuring MySQL. This is needed so that Bacula can
find the necessary include headers and library files for interfacing to MySQL.

Now you will create the Bacula MySQL database and the tables that Bacula uses.

Start mysql. You might want to use the startmysql script provided in the Bacula
release.

1.

cd <bacula−src>/src/cats2.

This directory contains the Bacula catalog interface routines.

./grant_mysql_privileges3.

This script creates unrestricted access rights for kern, kelvin, and bacula. You may want
to modify it to suit your situation. Please note that none of these userids including root
are password protected.

./create_mysql_database4.

This script creates the MySQL bacula database. The databases you create as well as the
access databases will be located in <install−dir>/var/ in a subdirectory with the name of
the database, where <install−dir> is the directory name that you specified on the
−−prefix option. This can be important to know if you want to make a special backup of
the Bacula database or to check its size.

Bacula Storage Management System

Installing and Configuring MySQL −− Phase II 271

./make_mysql_tables5.

This script creates the MySQL tables used by Bacula.

Each of the three scripts (grant_mysql_privileges, create_mysql_database and
make_mysql_tables) allows the addition of a command line argument. This can be useful for
specifying the user and or password. For example, you might need to add −u root to the
command line to have sufficient privilege to create the Bacula tables.

To take a closer look at the access privileges that you have setup with the above, you can do:

mysql−directory/bin/mysql −u root mysql

select * from user;

Re−initializing the Catalog Database

After you have done some initial testing with Bacula, you will probably want to re−initialize the
catalog database and throw away all the test Jobs that you ran. To do so, you can do the
following:

 cd <bacula−source>/src/cats
 ./drop_mysql_tables
 ./make_mysql_tables

Please note that all information in the database will be lost and you will be starting from scratch.
If you have written on any Volumes, you must write and end of file mark on the volume so that
Bacula can reuse it. Do so with:

 (stop Bacula or unmount the drive)
 mt −f /dev/nst0 rewind
 mt −f /dev/nst0 weof

Where you should replace /dev/nst0 with the appropriate tape drive device name for your
machine.

Linking Bacula with MySQL

After configuring Bacula with

./configure −−enable−thread−safe−client −−prefix=<mysql−directory>

where <mysql−directory> is in my case /home/kern/mysql, you may have to configure the
loader so that it can find the MySQL shared libraries. If you have previously followed this
procedure and later add the −−enable−thread−safe−client options, you will need to rerun the
ldconfig program shown below. If you put MySQL in a standard place such as /usr/lib or
/usr/local/lib this will not be necessary, but in my case it is. The description that follows is Linux
specific. For other operating systems, please consult your manuals on how to do the same thing:

First edit: /etc/ld.so.conf and add a new line to the end of the file with the name of the
mysql−directory. In my case, it is:

Bacula Storage Management System

Re−initializing the Catalog Database 272

/home/kern/mysql/lib/mysql

then rebuild the loader's cache with:

/sbin/ldconfig

If you upgrade to a new version of MySQL, the shared library names will probably changes, and
you must re−run the /sbin/ldconfig command so that the runtime loader can find them.

Alternatively, your system my have a loader environment variable that can be set. For example,
on a Solaris system where I do not have root permission, I use:

LD_LIBRARY_PATH=/home/kern/mysql/lib/mysql

Finally, if you have encryption enabled in MySQL, you may need to explicitly edit the Makefile
in several of the directories to add −lssl −lcrypto to the link.

Restoring Files with a Bootstrap File Index Installing and Configuring SQLite

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 23

Installing and Configuring MySQL Index Internal Bacula Database

Bacula Storage Management System

Re−initializing the Catalog Database 273

http://www.bacula.org/

Installing and Configuring SQLite

Installing and Configuring SQLite −− Phase I

If you use the ./configure −−with−sqlite statement for configuring Bacula, you will need
SQLite version 2.2.3 or later installed. Our standard location (for the moment) for SQLite is in
the dependency package depkgs/sqlite−2.2.3. Please note that the version will be updated as new
versions are available and tested.

Installing and Configuring is quite easy.

Download the Bacula dependency packages1.
Detar it with something like:2.

tar xvfz depkgs.tar.gz

Note, the above command requires GNU tar. If you do not have GNU tar, a command
such as:

zcat depkgs.tar.gz | tar xvf −

will probably accomplish the same thing.

cd depkgs3.

make sqlite4.

At this point, you should return to completing the installation of Bacula.

Please note that the ./configure used to build Bacula will need to include −−with−sqlite.

Installing and Configuring SQLite −− Phase II

This phase is done after you have run the ./configure command to configure Bacula. At this
point, you can create the SQLite database and tables:

cd <bacula−src>/src/cats1.

This directory contains the Bacula catalog interface routines.

./make_sqlite_tables2.

This script creates the SQLite database as well as the tables used by Bacula. This script will be
automatically setup by the ./configure program to create a database named bacula.db in
Bacula's working directory.

Installing and Configuring SQLite 274

Linking Bacula with SQLite

If you have followed the above steps, this will all happen automatically and the SQLite libraries
will be linked into Bacula.

Testing SQLite

As of this date (20 March 2002), we have much less "production" experience using SQLite than
using MySQL. That said, we should note that SQLite has performed flawlessly for us in all our
testing.

Re−initializing the Catalog Database

After you have done some initial testing with Bacula, you will probably want to re−initialize the
catalog database and throw away all the test Jobs that you ran. To do so, you can do the
following:

 cd <bacula−source>/src/cats
 ./drop_sqlite_tables
 ./make_sqlite_tables

Please note that all information in the database will be lost and you will be starting from scratch.
If you have written on any Volumes, you must write and end of file mark on the volume so that
Bacula can reuse it. Do so with:

 (stop Bacula or unmount the drive)
 mt −f /dev/nst0 rewind
 mt −f /dev/nst0 weof

Where you should replace /dev/nst0 with the appropriate tape drive device name for your
machine.

Installing and Configuring MySQL Index Internal Bacula Database

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 24

Installing and Configuring SQLite Index Bacula Licenses

Bacula Storage Management System

Linking Bacula with SQLite 275

http://www.bacula.org/

Internal Bacula Database

Internal Bacula Database

The Bacula internal database is no longer supported, please do not use it.

Previously it was intended to be used primarily by Bacula developers for testing; although
SQLite is also a good choice for this. We do not recommend its use in general.

This database is simplistic in that it consists entirely of Bacula's internal structures appended
sequentially to a file. Consequently, it is in most cases inappropriate for sites with many clients
or systems with large numbers of files, or long−term production environments.

Below, you will find a table comparing the features available with SQLite and MySQL and with
the internal Bacula database. At the current time, you cannot dynamically switch from one to the
other, but must rebuild the Bacula source code. If you wish to experiment with both, it is possible
to build both versions of Bacula and install them into separate directories.

Feature SQLite or MySQL Bacula

Job Record Yes Yes

Media Record Yes Yes

FileName Record Yes No

File Record Yes No

FileSet Record Yes Yes

Pool Record Yes Yes

Client Record Yes Yes

JobMedia Record Yes Yes

List Job Records Yes Yes

List Media Records Yes Yes

List Pool Records Yes Yes

List JobMedia Records Yes Yes

Delete Pool Record Yes Yes

Delete Media Record Yes Yes

Update Pool Record Yes Yes

Internal Bacula Database 276

Implement Verify Yes No

MD5 Signatures Yes No

In addition, since there is no SQL available, the Console commands: sqlquery, query, retention,
and any other command that directly uses SQL are not available with the Internal database.

Installing and Configuring SQLite Index Bacula Licenses

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 25

Internal Bacula Database Index GPL

Bacula Storage Management System

Internal Bacula Database 277

http://www.bacula.org/

Bacula Copyright, Trademark, and Licenses
There are a number of different licenses that are used in Bacula.

GPL

The vast bulk of the code is released under the GNU General Public License version 2. Most of
this code is copyrighted: Copyright (C) 2000−2003 Kern Sibbald and John Walker.

Portions may be copyrighted by other people (ATT, the Free Software Foundation, ...).

LGPL

Some of the Bacula library source code is released under the GNU Lesser General Public
License. This permits third parties to use these parts of our code in their proprietary programs to
interface to Bacula.

Public Domain

Some of the Bacula code has been released to the public domain. E.g. md5.c, SQLite.

Trademark

Bacula®is a registered trademark of Kern Sibbald and John Walker.

We have trademarked the Bacula name to ensure that any variant of Bacula will be exactly
compatible with the program that we have released. The use of the name Bacula is restricted to
software systems that agree exactly with the program presented here.

Disclaimer

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

Bacula Copyright, Trademark, and Licenses 278

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Internal Bacula Database Index GPL

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 25.1

Bacula Licenses Index LGPL

Bacula Storage Management System

Bacula Copyright, Trademark, and Licenses 279

http://www.bacula.org/

GNU General Public License

What to do if you see a possible GPL violation•
Translations of the GPL•

Table of Contents

GNU GENERAL PUBLIC LICENSE
Preamble♦
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

♦

How to Apply These Terms to Your New Programs♦

•

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place − Suite 330, Boston, MA 02111−1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software−−to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation's software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get it if

GNU General Public License 280

http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/copyleft/gpl-violation.html
http://www.gnu.org/copyleft/copyleft.html#translations

you want it, that you can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you
if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without limitation in the term
"modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 281

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

•

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at
no charge to all third parties under the terms of this License.

•

c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an
announcement.)

•

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do one
of the following:

a) Accompany it with the complete corresponding machine−readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

•

b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution, a
complete machine−readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software

•

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 282

interchange; or,

c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

•

The source code for a work means the preferred form of the work for making modifications to it.
For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions on
the recipients' exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not permit
royalty−free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 283

other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and "any later version", you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 284

MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have
at least the "copyright" line and a pointer to where the full notice is found.

one line to give the program's name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place − Suite 330, Boston, MA 02111−1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'. This is free software, and you are welcome
to redistribute it under certain conditions; type `show c'
for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something other
than `show w' and `show c'; they could even be mouse−clicks or menu items−−whatever
suits your program.

Bacula Storage Management System

END OF TERMS AND CONDITIONS 285

You should also get your employer (if you work as a programmer) or your school, if any, to sign
a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program `Gnomovision'
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

Return to GNU's home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the FSF.

Comments on these web pages to webmasters@www.gnu.org, send other questions to
gnu@gnu.org.

Copyright notice above.
Free Software Foundation, Inc., 59 Temple Place − Suite 330, Boston, MA 02111, USA

Updated: 3 Jan 2000 rms

Bacula Licenses Index LGPL

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 25.2

GPL Index FAQ

Bacula Storage Management System

END OF TERMS AND CONDITIONS 286

http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org
http://www.bacula.org/

GNU Lesser General Public License
 [English | Japanese]

Why you shouldn't use the Lesser GPL for your next library•
What to do if you see a possible LGPL violation•
Translations of the LGPL•
The GNU Lesser General Public License as a text file•
The GNU Lesser General Public License as a Texinfo file•

This GNU Lesser General Public License counts as the successor of the GNU Library General
Public License. For an explanation of why this change was necessary, read the Why you
shouldn't use the Lesser GPL for your next library article.

Table of Contents

GNU LESSER GENERAL PUBLIC LICENSE
Preamble♦
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

♦

How to Apply These Terms to Your New Libraries♦

•

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
 as the successor of the GNU Library Public License, version 2, hence
 the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share

GNU Lesser General Public License 287

http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.ja.html
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/copyleft/gpl-violation.html
http://www.gnu.org/copyleft/copyleft.html#translationsLGPL
http://www.gnu.org/copyleft/lesser.txt
http://www.gnu.org/copyleft/lesser.texi
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html

and change free software−−to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages−−typically libraries−−of the Free Software Foundation and other authors who decide to
use it. You can use it too, but we suggest you first think carefully about whether this license or
the ordinary General Public License is the better strategy to use in any particular case, based on
the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish); that you receive source code or can get it if
you want it; that you can change the software and use pieces of it in new free programs; and that
you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these
rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the
recipients all the rights that we gave you. You must make sure that they, too, receive or can get
the source code. If you link other code with the library, you must provide complete object files to
the recipients, so that they can relink them with the library after making changes to the library
and recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two−step method: (1) we copyright the library, and (2) we offer
you this license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free
library. Also, if the library is modified by someone else and passed on, the recipients should
know that what they have is not the original version, so that the original author's reputation will
not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to
make sure that a company cannot effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a
version of the library must be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public
License. This license, the GNU Lesser General Public License, applies to certain designated
libraries, and is quite different from the ordinary General Public License. We use this license for
certain libraries in order to permit linking those libraries into non−free programs.

When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original library.
The ordinary General Public License therefore permits such linking only if the entire
combination fits its criteria of freedom. The Lesser General Public License permits more lax
criteria for linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the user's
freedom than the ordinary General Public License. It also provides other free software developers
Less of an advantage over competing non−free programs. These disadvantages are the reason we

Bacula Storage Management System

GNU Lesser General Public License 288

use the ordinary General Public License for many libraries. However, the Lesser license provides
advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use
of a certain library, so that it becomes a de−facto standard. To achieve this, non−free programs
must be allowed to use the library. A more frequent case is that a free library does the same job
as widely used non−free libraries. In this case, there is little to gain by limiting the free library to
free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non−free programs enables a greater
number of people to use a large body of free software. For example, permission to use the GNU
C Library in non−free programs enables many more people to use the whole GNU operating
system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users' freedom, it does
ensure that the user of a program that is linked with the Library has the freedom and the
wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close
attention to the difference between a "work based on the library" and a "work that uses the
library". The former contains code derived from the library, whereas the latter must be combined
with the library in order to run.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a
notice placed by the copyright holder or other authorized party saying it may be distributed under
the terms of this Lesser General Public License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and data) to
form executables.

The "Library", below, refers to any such software library or work which has been distributed
under these terms. A "work based on the Library" means either the Library or any derivative
work under copyright law: that is to say, a work containing the Library or a portion of it, either
verbatim or with modifications and/or translated straightforwardly into another language.
(Hereinafter, translation is included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for making modifications to it.
For a library, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running a program using the Library is not restricted, and output
from such a program is covered only if its contents constitute a work based on the Library
(independent of the use of the Library in a tool for writing it). Whether that is true depends on

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 289

what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and distribute a copy of this License
along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work
based on the Library, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.•
b) You must cause the files modified to carry prominent notices stating that you changed
the files and the date of any change.

•

c) You must cause the whole of the work to be licensed at no charge to all third parties
under the terms of this License.

•

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an argument
passed when the facility is invoked, then you must make a good faith effort to ensure
that, in the event an application does not supply such function or table, the facility still
operates, and performs whatever part of its purpose remains meaningful.

•

(For example, a function in a library to compute square roots has a purpose that is
entirely well−defined independent of the application. Therefore, Subsection 2d requires
that any application−supplied function or table used by this function must be optional: if
the application does not supply it, the square root function must still compute square
roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Library, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this
License to a given copy of the Library. To do this, you must alter all the notices that refer to this
License, so that they refer to the ordinary GNU General Public License, version 2, instead of to

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 290

this License. (If a newer version than version 2 of the ordinary GNU General Public License has
appeared, then you can specify that version instead if you wish.) Do not make any other change
in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU
General Public License applies to all subsequent copies and derivative works made from that
copy.

This option is useful when you wish to copy part of the code of the Library into a program that is
not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that you
accompany it with the complete corresponding machine−readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange.

If distribution of object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place satisfies the requirement
to distribute the source code, even though third parties are not compelled to copy the source
along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work
with the Library by being compiled or linked with it, is called a "work that uses the Library".
Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the
scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable that is a
derivative of the Library (because it contains portions of the Library), rather than a "work that
uses the library". The executable is therefore covered by this License. Section 6 states terms for
distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the Library,
the object code for the work may be a derivative work of the Library even though the source
code is not. Whether this is true is especially significant if the work can be linked without the
Library, or if the work is itself a library. The threshold for this to be true is not precisely defined
by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and
small macros and small inline functions (ten lines or less in length), then the use of the object file
is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this
object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the
work under the terms of Section 6. Any executables containing that work also fall under Section
6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses the
Library" with the Library to produce a work containing portions of the Library, and distribute
that work under terms of your choice, provided that the terms permit modification of the work
for the customer's own use and reverse engineering for debugging such modifications.

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 291

You must give prominent notice with each copy of the work that the Library is used in it and that
the Library and its use are covered by this License. You must supply a copy of this License. If
the work during execution displays copyright notices, you must include the copyright notice for
the Library among them, as well as a reference directing the user to the copy of this License.
Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine−readable source code
for the Library including whatever changes were used in the work (which must be
distributed under Sections 1 and 2 above); and, if the work is an executable linked with
the Library, with the complete machine−readable "work that uses the Library", as object
code and/or source code, so that the user can modify the Library and then relink to
produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be
able to recompile the application to use the modified definitions.)

•

b) Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present on the
user's computer system, rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if the user installs one, as
long as the modified version is interface−compatible with the version that the work was
made with.

•

c) Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more than the
cost of performing this distribution.

•

d) If distribution of the work is made by offering access to copy from a designated place,
offer equivalent access to copy the above specified materials from the same place.

•

e) Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

•

For an executable, the required form of the "work that uses the Library" must include any data
and utility programs needed for reproducing the executable from it. However, as a special
exception, the materials to be distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies the
executable.

It may happen that this requirement contradicts the license restrictions of other proprietary
libraries that do not normally accompany the operating system. Such a contradiction means you
cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side−by−side in a single
library together with other library facilities not covered by this License, and distribute such a
combined library, provided that the separate distribution of the work based on the Library and of
the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of
the Sections above.

•

b) Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined form
of the same work.

•

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 292

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Library or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Library (or any work based on the Library), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing or modifying the
Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or modify
the Library subject to these terms and conditions. You may not impose any further restrictions on
the recipients' exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent license would not permit
royalty−free redistribution of the Library by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply, and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system which is implemented by public license
practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Library under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 293

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number
of this License which applies to it and "any later version", you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Library does not specify a license version number, you may choose any
version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing and
reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public, we
recommend making it free software that everyone can redistribute and change. You can do so by
permitting redistribution under these terms (or, alternatively, under the terms of the ordinary
General Public License).

Bacula Storage Management System

END OF TERMS AND CONDITIONS 294

To apply these terms, attach the following notices to the library. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the "copyright" line and a pointer to where the full notice is found.

one line to give the library's name and an idea of what it does.
Copyright (C) year name of author

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to sign
a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in
the library `Frob' (a library for tweaking knobs) written
by James Random Hacker.

signature of Ty Coon, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

Return to GNU's home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the FSF.

Comments on these web pages to webmasters@www.gnu.org, send other questions to
gnu@gnu.org.

Copyright notice above.
Free Software Foundation, Inc., 59 Temple Place − Suite 330, Boston, MA 02111, USA

Updated: 27 Nov 2000 paulv

GPL Index FAQ

Bacula Storage Management System

END OF TERMS AND CONDITIONS 295

http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

LGPL Index Projects

Bacula Storage Management System

END OF TERMS AND CONDITIONS 296

http://www.bacula.org/

Bacula Frequently Asked Questions
See the bugs section of this document for a list of known bugs and solutions.

What is Bacula?

Bacula is a network backup and restore program.
Does Bacula support Windows?

Yes, Bacula compiles and runs on Windows machines (Win98, WinMe, WinXP,
WinNT, and Win2000). We provide a binary version of the Client (bacula−fd), but have
not tested the Director nor the Storage daemon. Note, Win95 is no longer supported
because it doesn't have the GetFileAttributesExA API call.

What language is Bacula written in?

It is written in C++, but it is mostly C code using only a limited set of the C++
extensions over C. Thus Bacula is completely compiled using the C++ compiler. There
are several modules, including the Win32 interface that are written using the object
oriented C++ features. Over time, we are slowly adding a larger subset of C++.

On what machines does Bacula run?

Bacula builds and executes on RedHat Linux (versions 7.1, 7.2, and 7.3), FreeBSD,
Solaris, and Win32. On Win32 systems (Win95/98/Me/XP/NT/2000), only the client
program (File daemon) has been tested.
Bacula has been my only backup tool for over three years backing up 5 machines nightly
(3 Linux boxes running RedHat, a Win98 machine, and a WinNT machine).

Is Bacula stable?

Yes, it is remarkably stable, but remember, there are still a lot of unimplemented or
partially implemented features. With a program of this size (70,000+ lines of C code not
including the SQL programs) there are bound to be bugs. The current test environment (a
twisted pair local network and a HP DLT backup tape) is rather idea, so additional
testing on other sites is necessary. The File daemon has never crashed −− running
months at a time with no intervention. The Storage daemon is remarkably stable with
most of the problems arising during labeling or switching tapes. Storage daemon crashes
are rare. The Director, given the multitude of functions it fulfills is also relatively stable.
In a production environment, it rarely if ever crashes. Of the three daemons, the Director
is the most prone to having problems. It frequently runs several months with no
problems.

There are a number of reasons for this stability. 1. The program was largely written by
one person to date (Kern). 2. The program constantly is checking the chain of allocated
memory buffers to ensure that no overruns have occurred. 3. All memory leaks
(orphaned buffers) are reported each time the program terminates. 4. Any signal
(segmentation fault, ...) generates a traceback that is emailed to the developer. This
permits quick resolution of bugs even if they only show up rarely in a production system.

Bacula Frequently Asked Questions 297

I'm Getting Authorization Errors. What is Going On?

For security reasons, Bacula requires that both the File daemon and the Storage daemon
know the name of the Director as well as his password. As a consequence, if you change
the Director's name or password, you must make the corresponding change in the
Storage daemon and in the File daemon configuration files.
During the authorization process, the Storage daemon and File daemon also require that
the Director authenticate himself, so both ends require the other to have the correct name
and password.

If you have edited the conf files and modified any name or any password, then your best
bet is to go back to the original conf files generated by the Bacula installation process.
Make only the absolutely necessary modifications to these files −− e.g. add the correct
email address. Then follow the instructions in the Running Bacula chapter of this
manual. You will run a backup to disk and a restore. Only when that works, should you
begin customization of the conf files.

Bacula Runs Fine but Cannot Access a Client on a Different Machine. Why?

There are several reasons why Bacula could not contact a client on a different machine.
They are:

It is a Windows Client, and the client died because of an improper configuration
file. Check that the Bacula icon is in the system tray and the the menu items
work. If the client has died, the icon will disappear only when you move the
mouse over the icon.

◊

The Client address or port is incorrect or not resolved by DNS. See if you can
ping the client machine using the same address as in the Client record.

◊

You have a firewall, and it is blocking traffic on port 9102 between the
Director's machine and the Clients machine (or on port 9103 between the Client
and the Storage daemon machines).

◊

Your password or names are not correct in both the Director and the Client
machine. Try configuring everything identical to how you run the client on the
same machine as the Director, but just change the Address. If that works, make
the other changes one step at a time until it works.

◊

My Catalog is Full of Test Runs, How Can I Start Over?

If you are using MySQL do the following:
 cd <bacula−source>/src/cats
 ./drop_mysql_tables
 ./make_mysql_tables

If you are using SQLite, do the following:

 Delete bacula.db from your working directory.
 cd <bacula−source>/src/cats
 ./drop_sqlite_tables
 ./make_sqlite_tables

Bacula Storage Management System

Bacula Frequently Asked Questions 298

Then write an EOF on each tape you used with Bacula

I Run a Restore Job and Bacula Hangs. What do I do?

On Bacula version 1.25 and prior, it expects you to have the correct tape mounted prior
to a restore. On Bacula version 1.26 and higher, it will ask you for the tape, and if the
wrong one it mounted, it will inform you.
If you have previously done an unmount command, all Storage daemon sessions (jobs)
will be completely blocked from using the drive unmounted, so be sure to do a mount
after your unmount. If in doubt, do a second mount, it won't cause any harm.

I Cannot Get My Windows Client to Start Automatically?

You are probably having one of two problems: either the Client is dying due to an
incorrect configuration file, or you didn't do the Installation commands necessary to
install it as a Windows Service.
For the first problem, see the next FAQ question. For the second problem, please review
the Windows Installation instructions in this manual.

My Windows Client Immediately Dies When I Start It

The most common problem is either that the configuration file is not where it expects it
to be, or that there is an error in the configuration file. You must have the configuration
file in c:\bacula\bin\bacula−fd.conf.
To see what is going on when the File daemon starts on Windows, do the following:

 Start a DOS shell Window.
 cd c:\bacula\bin
 bacula−fd −t >out
 type out

Calling bacula−fd with redirection (>) will write the diagnostic output to the file out
which you can then list. The −t option tells Bacula to read the configuration file and then
exit.

When I Start the Console, the Error Messages Fly By. How can I see them?

Either use a shell window with a scroll bar, or use the gnome−console. In any case, you
probably should be logging all output to a file, and then you can simply view the file
using an editor or the less program. To log all output, I have the following in my
Director's Message resource definition:
 append = "/home/kern/bacula/bin/log" = all, !skipped

Obviously you will want to change the filename to be appropriate for your system.

I didn't realize that the backups were not working on my Windows Client. What should I do?

You should be sending yourself an email message for each job. This will avoid the
possibility of not knowing about a failed backup. To do so put something like:
 Mail = yourname@yourdomain = all, !skipped

Bacula Storage Management System

Bacula Frequently Asked Questions 299

in your Director's message resource. You should then receive one email for each Job that
ran. When you are comfortable with what is going on (it took me 9 months), you might
change that to:

 MailOnError = yourname@yourdomain = all, !skipped

then you only get email messages when a Job errors as is the case for your Windows
machine.

You should also be logging the Director's messages, please see the previous FAQ for
how to do so.

All my Jobs are scheduled for the same time. Will this cause problems?

No, not at all. Bacula will schedule all the Jobs at the same time, but will run them one
after another unless you have increased the number of simultaneous jobs in the
configuration files for the Director, the File daemon, and the Storage daemon. The
appropriate configuration record is Maximum Concurrent Jobs = nn. At the current
time, we recommend that you leave this set to 1 for the Director.

Can Bacula Backup My System To Files instead of Tape?

Yes, in principle, Bacula can backup to any storage medium as long as you have
correctly defined that medium in the Storage daemon's Device resource. For an example
of how to backup to files, please see the Pruning Example in the Recycling chapter of
this manual. Also, there is a whole chapter devoted to Backing Up to Disk.

Can Bacula Backup and Restore Files Greater than 2 Giga Bytes in Size?

If your operating system permits it, and you are running Bacula version 1.26 or later, the
answer is yes. Unfortunately, large files are not supported by cygwin which Bacula uses
for the Windows client. However, the native Windows APIs are used in Bacula version
1.31 and later on Windows systems, so in principal any 2 Giga Byte problems should
disappear.

I Started A Job then Decided I Really Did Not Want to Run It. Is there a better way than ./bacula
stop to stop it?

Yes, you normally should use the Console command cancel to cancel a Job that is either
scheduled or running. If the Job is scheduled, it will be marked for cancellation and will
be canceled when it is scheduled to start. If it is running, it will normally terminate after
a few minutes. If the Job is waiting on a tape mount, you may need to do a mount
command before it will be canceled.

Why have You Trademarked the Name Bacula
®
?

We have trademarked the name Bacula to ensure that all media written by any program
named Bacula will always be compatible. Anyone may use the name Bacula, even in a

Bacula Storage Management System

Bacula Frequently Asked Questions 300

derivative product as long as it remains totally compatible in all respects with the
program defined here.

Why is Your Online Document for Version 1.27 of Bacula when the Currently Release Version is
1.26?

As Bacula is being developed, the document is also being enhanced, more often than not
it has clarifications of existing features that can be very useful to our users, so we publish
the very latest document. Fortunately it is rare that there are confusions with new
features.
If you want to read a document that pertains only to a specific version, please use the one
distributed in the source code.

How Can You Be Sure that Bacula Really Saves and Restores All Files?

It is really quite simple, but took me awhile to figure out how to "prove" it. First make a
Bacula Rescue disk, see the Disaster Recovery Using Bacula of this manual. Second, you
run a full backup of all your files on all partitions. Third, you run an Verify InitCatalog
Job on the same FileSet, which effectively makes a record of all the files on your system.
Fourth, you run a Verify Catalog job and assure yourself that nothing has changed (well,
between an InitCatalog and Catalog one doesn't expect anything). Then do the
unthinkable, write zeros on your MBR (master boot record) wiping out your hard disk.
Now, restore your whole system using your Bacula Rescue disk and the Full backup you
made, and finally re−run the Verify Catalog job. You will see that with the exception of
the directory modification and access dates and the files changed during the boot, your
system is identical to what it was before you wiped your hard disk.

I did a Full backup last week, but now in running an Incremental, Bacula says it did not find a
FULL backup time, so it did a FULL backup. Why?

Before doing an Incremental or a Differential backup, Bacula checks to see if there was a
prior Full backup of the same Job that terminated successfully. If so, it uses the date that
full backup started as the time for comparing if files have changed. If Bacula does not
find a successfully full backup, it proceeds to do one. Perhaps you canceled the full
backup, or it terminated in error. In such cases, the full backup will not be successful.
You can check by entering list jobs and look to see if there is a prior Job with the same
Name that has Level F and JobStatus T (normal termination).
Another reason why Bacula may not find a suitable Full backup is that every time you
change the FileSet, Bacula will require a new Full backup. This is necessary to ensure
that all files are properly backed up in the case where you have added more files to the
FileSet. Beginning with version 1.31, the FileSets are also dated when they are created,
and this date is displayed with the name when you are listing or selecting a FileSet. For
more on backup levels see below.

How Can You Claim to Handle Unlimited Path and Filename Lengths when All Other Programs
Have Fixed Limits?

Most of those other programs have been around for a long time, in fact since the
beginning of Unix, which means that they were designed for rather small fixed length
path and filename lengths. Over the years, these restrictions have been relaxed allowing
longer names. Bacula on the other hand was designed in 2000, and so from the start, Path

Bacula Storage Management System

Bacula Frequently Asked Questions 301

and Filenames have been keep in buffers that start at 256 bytes in length but can grow as
needed to handle any length. Most of the work is carried out by lower level routines
making the coding rather easy.

What Is the Really Unique Feature of Bacula?

Well, it is hard to come up with unique features when backup programs for Unix
machines have been around since the 1960s. That said, I believe that Bacula is the first
and only program to use a standard SQL interface to its catalog database. Although this
adds a bit of complexity and possibly overhead, it provides an amazingly rich set of
features that are easy to program and enhance. The current code has barely scratched the
surface in this regard (version 1.31).
The second feature, which gives a lot of power and flexibility to Bacula is the Bootstrap
record definition.

The third unique feature, which is currently (1.30) unimplemented, and thus can be
called vaporware :−), is Base level saves. When implemented, this will enormously
reduce tape usage.

Since Bacula is Multithreaded, Why Do You Recommend Not Running Multiple Simultaneous
Jobs?

Bacula can run multiple simultaneous jobs, but being very conservative, I do not
recommend doing so at the current time for two reasons: 1. I'm not sure that two jobs
accessing the same Volume won't have catalog conflicts. 2. Doing a restore from a
Volume with records from two jobs intermingled is complicated.
I expect to have definitive solutions to both of those problems in a later version. In the
mean time, I recommend running one Job at a time. If you want to experiment with this
as several large shops are doing, ensure that each job is writing to a different Volume
(i.e. has a different Storage resource). This will avoid the two problems mentioned
above. Just the same, there may be other race conditions in the Director that cause
problems. Be forewarned.

If I Do Run Multiple Simultaneous Jobs, How Can I Force One Particular Job to Run After
Another Job?

Yes, you can set Priorities on your jobs so that they run in the order you specify. Please
see: the Priority record in the Job resource.

I Am Not Getting Email Notification, What Can I Do?

The most common problem is that you have not specified a fully qualified email address
and your smtp server is rejecting the mail. The next most common problem is that your
smtp server doesn't like the syntax on the From part of the message. For more details on
this and other problems, please see the Getting Email Notification to Work section of the
Tips chapter of this manual. The section Getting Notified of Job Completion of the Tips
chapter may also be useful. For more information on the smtp mail program, please see
smtp in the Volume Utility Tools chapter of this manual.

I Change Recycling, Retention Periods, or File Sizes in my Pool Resource and they Still Don"t
Work.

Bacula Storage Management System

Bacula Frequently Asked Questions 302

The different variables associated with a Pool are defined in the Pool Resource, but are
actually read by Bacula from the Catalog database. On Bacula versions prior to 1.30,
after changing your Pool Resource, you must manually update the corresponding values
in the Catalog by using the update pool command in the Console program. In Bacula
version 1.30, Bacula does this for you automatically every time it starts.
When Bacula creates a Media record (Volume), it uses many default values from the
Pool record. If you subsequently change the Pool record, the new values will be used as a
default for the next Volume that is created, but if you want the new values to apply to
existing Volumes, you must manually update the Volume Catalog entry using the
update volume command in the Console program.

I Have Configured Compression On, But None of My Files Are Compressed. Why?

There are two kinds of compression. One is tape compression. This is done by the tape
drive hardware, and you either enable or disable it with system tools such as mt. This
compression works independently of Bacula.
Bacula also has compression code, which is normally used only when backing up to file
Volumes. There are two conditions for this "software" to be enabled.

You must have the zip development libraries loaded on your system when
building Bacula and Bacula must find this library, normally /usr/lib/libz.a. On
RedHat systems, this library is provided by the zlib−devel rpm.

1.

If the library is found by Bacula during the ./configure it will be indicated on the
config.out line by:

 ZLIB support: yes

You must add the compression=gzip option on your Include statement in the
Director's configuration file.

2.

Bacula is Asking for a New Tape After 2 GB of Data but My Tape holds 33 GB. Why?

There are several reasons why Bacula will request a new tape.

There is an I/O error on the tape. Bacula prints an error message and requests a
new tape. Bacula does not attempt to continue writing after an I/O error.

◊

Bacula encounters and end of medium on the tape. This is not always
distinguishable from an I/O error.

◊

You have specifically set some size limitation on the tape. For example the
Maximum Volume Bytes or Maximum Volume Files in the Director's Pool
resource, or Maximum Volume Size in the Storage daemon's Device resource.

◊

Bacula is Not Doing the Right Thing When I Request an Incremental Backup. Why?

As explained in one of the previous questions, Bacula will automatically upgrade an
Incremental or Differential job to a Full backup if it cannot find a prior Full backup or a
suitable Full backup. For the gory details on how/when Bacula decides to upgrade levels
please see the Level record in the Director's configuration chapter of this manual.
If after reading the above mentioned section, you believe that Bacula is not correctly

Bacula Storage Management System

Bacula Frequently Asked Questions 303

handling the level (Differential/Incremental), please send us the following information
for analysis:

Your Director's configuration file.♦
The output from list jobs covering the period where you are having the problem.♦
The Job report output from the prior Full save (not critical).♦
An llist jobid=nnn where nnn is the JobId of the prior Full save.♦
The Job report output from the save that is doing the wrong thing (not critical).♦
An llist jobid=nnn where nnn is the JobId of the job that was not correct.♦
An explanation of what job went wrong and why you think it did.♦

The above information can allow us to analyze what happened, without it, there is not
much we can do.

I am Backing Up an Offsite Machine with an Unreliable Connection. The Director Waits
Forever for the Client to Contact the SD. What Can I Do.

Bacula was written on the assumption that it will have a good TCP/IP connection
between all the daemons. As a consequence, the current Bacula doesn't deal with fauty
connection very well. This situation is slowly being corrected over time.

There are several things you can do to improve the situation.

Upgrade to version 1.32 and use the new SDConnectTimeout record. For
example, set:

♦

 SD Connect Timeout = 5 min

in the FileDaemon resource.
Run these kinds of jobs after all other jobs.♦

LGPL Index Projects

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

FAQ Index Security Issues

Bacula Storage Management System

Bacula Frequently Asked Questions 304

http://www.bacula.org/

Bacula Projects

Projects

Test as many features of Bacula as possible. This is happening a bit with every release.•
Ensure that the documentation is complete and clear.•
Implement the Bacula Roadmap as defined below.•
Enhance the file restore code to restore according to a large number of criteria (include
list, exclude list, state of system as of date xxx, ...) (assigned to Kern)

•

Write a GUI interface for restoring files.•
Define and write a regression script.•
Implement verification of tape data −− compared to what is on disk.•
Implement SSL between daemons.•
Performance tuning.•
Implement a scripting language for running Jobs.•
Implement GNOME Bacula applet.•
Implement new serial code for daemon−daemon comm and replace all sscanf's.•
Complete review of SQL database usage, indexes, and table design.•

Raw Todo List

Please see the file kernstodo in the main Bacula directory for the raw todo list.

Bacula Projects Roadmap

 Bacula Projects Roadmap
 17 August 2002
 last update 5 January 2003

Item 1: Multiple simultaneous Jobs. (done)
Done −− Restore part needs better implementation to work correctly

 What: Permit multiple simultaneous jobs in Bacula.

 Why: An enterprise level solution needs to go fast without the
 need for the system administrator to carefully tweak
 timing. Based on the benchmarks, during a full
 backup, NetWorker typically hit 10 times the bandwidth to
 the tape compared to Bacula−−largely. This is probably due to
 running parallel jobs and multi−threaded filling of buffers
 and writing them to tape. This should also make things work
 better when you have a mix of fast and slow machines backing
 up at the same time.

 Notes: Bacula was designed to run multiple simultaneous jobs. Thus
 implementing this is a matter of some small cleanups and
 careful testing.

Item 2: Make the Storage daemon use intermediate file storage to buffer data.
Deferred −− not necessary yet.

 What: If data is coming into the SD too fast, buffer it to

Bacula Projects 305

 disk if the user has configured this option.

 Why: This would be nice, especially if it more or less falls out
 when implementing (1) above. If not, it probably should not
 be given a high priority because fundamentally the backup time
 is limited by the tape bandwidth. Even though you may finish a
 client job quicker by spilling to disk, you still have to
 eventually get it onto tape. If intermediate disk buffering
 allows us to improve write bandwidth to tape, it may make
 sense.

 Notes: Whether or not this is implemented will depend upon performance
 testing after item 1 is implemented.

Item 3: Write the bscan program −− also write a bcopy program.
Done

 What: Write a program that reads a Bacula tape and puts all the
 appropriate data into the catalog. This allows recovery
 from a tape that is no longer in the database, or it allows
 re−creation of a database if lost.

 Why: This is a fundamental robustness and disaster recovery tool
 which will increase the comfort level of a sysadmin
 considering adopting Bacula.

 Notes: A skeleton of this program already exists, but much work
 needs to be done. Implementing this will also make apparent
 any deficiencies in the current Bacula tape format.

Item 4: Implement Base jobs.

 What: A base job is sort of like a Full save except that you
 will want the FileSet to contain only files that are unlikely
 to change in the future (i.e. a snapshot of most of your
 system after installing it). After the base job has been run,
 when you are doing a Full save, you can specify to exclude
 all files saved by the base job that have not been modified.

 Why: This is something none of the competition does, as far as we know
 (except BackupPC, which is a Perl program that saves to disk
 only). It is big win for the user, it makes Bacula stand out
 as offering a unique optimization that immediately saves time
 and money.

 Notes: Big savings in tape usage. Will require more resources because
 the e. DIR must send FD a list of files/attribs, and the FD must
 search the list and compare it for each file to be saved.

Item 5: Implement Label templates

 What: This is a mechanism whereby Bacula can automatically create
 a tape label for new tapes according to a detailed specification
 provided by the user.

 Why: It is a major convenience item for folks who use automated label
 creation.

Bacula Storage Management System

Bacula Projects 306

 Notes: Bacula already has a working form of automatic tape label
 creation, but it is very crude. The design for the complete
 tape labeling project is already documented in the manual.

Item 6: Write a regression script.
Started

 What: This is an automatic script that runs and tests as many features
 of Bacula as possible. The output is compared to previous
 versions of Bacula and any differences are reported.

 Why: This is an enormous help in preventing introduction of new
 errors in parts of the program that already work correctly.

 Notes: This probably should be ranked higher, it's something the typical
 user doesn't see. Depending on how it's implemented, it may
 make sense to defer it until the archival tape format and
 user interface mature.

Item 7: GUI for interactive restore
Item 8: GUI for interactive backup

 What: The current interactive restore is implemented with a tty
 interface. It would be much nicer to be able to "see" the
 list of files backed up in typical GUI tree format.
 The same mechanism could also be used for creating
 ad−hoc backup FileSets (item 8).

 Why: Ease of use −− especially for the end user.

 Notes: Rather than implementing in Gtk, we probably should go directly
 for a Browser implementation, even if doing so meant the
 capability wouldn't be available until much later. Not only
 is there the question of Windows sites, most
 Solaris/HP/IRIX, etc, shops can't currently run Gtk programs
 without installing lots of stuff admins are very wary about.
 Real sysadmins will always use the command line anyway, and
 the user who's doing an interactive restore or backup of his
 own files will in most cases be on a Windows machine running
 Exploder.

Item 9: Add SSL to daemon communications.

 What: This provides for secure communications between the daemons.

 Why: This would allow doing backup across the Internet without
 privacy concerns (or with much less concern).

 Notes: The vast majority of near term potential users will be backing up
 a single site over a LAN and, correctly or not, they probably
 won't be concerned with security, at least not enough to go to
 the trouble to set up keys, etc. to screw things down. We suspect
 that many users genuinely interested in multi−site backup
 already run some form of VPN software in their internetwork
 connections, and are willing to delegate security to that layer.

Item 10: Define definitive tape format.

Bacula Storage Management System

Bacula Projects 307

Done (version 1.27)

 What: Define that definitive tape format that will not change
 for the next millennium.

 Why: Stability, security.

 Notes: See notes for item 11 below.

Item 11: New daemon communication protocol.

 What: The current daemon to daemon protocol is basically an ASCII
 printf() and sending the buffer. On the receiving end, the
 buffer is sscanf()ed to unpack it. The new scheme would
 be a binary format that allows quick packing and unpacking
 of any data type with named fields.

 Why: Using binary packing would be faster. Named fields will permit
 error checking to ensure that what is sent is what the
 receiver really wants.

 Notes: These are internal improvements in the interest of the
 long−term stability and evolution of the program. On the one
 hand, the sooner they're done, the less code we have to rip
 up when the time comes to install them. On the other hand, they
 don't bring an immediately perceptible benefit to potential
 users. Item 10 and possibly item 11 should be deferred until Bacula
 is well established with a growing user community more or
 less happy with the feature set. At that time, it will make a
 good "next generation" upgrade in the interest of data
 immortality.

FAQ Index Security Issues

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter 17

FAQ Index Thanks

Bacula Storage Management System

Bacula Projects 308

http://www.bacula.org/

Bacula Security Issues
The Clients (bacula−fd) must run as root to be able to access all the system files.•
It is not necessary to run the Director as root.•
It is not necessary to run the Storage daemon as root, but you must ensure that it can
open the tape drives, which are often restricted to root access by default.

•

You should restrict access to the Bacula configuration files, so that the passwords are
not world−readable. The Bacula daemons are password protected using CRAM−MD5
(i.e. the password is not sent across the network). This will ensure that not everyone can
access the daemons. It is a reasonably good protection, but can be cracked by experts.

•

If you are using the recommended ports 9101, 9102, and 9103, you will probably want to
protect these ports from external access using a firewall and/or using tcp wrappers
(etc/hosts.allow).

•

Currently all data that is sent across the network is unencrypted. As a consequence,
unless you use ssh or stunnel for port forwarding, it is not recommended to do a backup
across an insecure network (e.g. the Internet). In a future version, we plan to have ssl
encryption built−in.

•

You should ensure that the Bacula working directories are readable and writable only by
the Bacula daemons.

•

If you are using MySQL it is not necessary for it to run with root permission.•
The default Bacula grant−mysql−permissions script grants all permissions to use the
MySQL database without a password. If you want security, please tighten this up!

•

Don't forget that Bacula is a network program, so anyone anywhere on the network with
the console program and the Director's password can access Bacula and the backed up
data.

•

You can restrict what IP addresses Bacula will bind to by using the appropriate
DirAddress, FDAddress, or SDAddress records in the respective daemon configuration
files.

•

TCP Wrappers

TCP Wrappers are implemented if you turn them on when configuring (./configure
−−with−libwrap). With this code enabled, you may control who may access your daemons. This
control is done by modifying the file: /etc/hosts.allow. The program name that Bacula uses
when applying these access restrictions is the name you specify in the daemon configuration file.
This code is implemented but untested.

FAQ Index Thanks

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula Security Issues 309

http://www.bacula.org/

Bacula 1.32 User's Guide Chapter

Security Issues Index Bugs

Bacula Storage Management System

Bacula Security Issues 310

Thanks
Special thanks to D. Scott Barninger for writing the bacula RPM spec file, building all the RPM
files and loading them onto Source Forge.

Thanks to Richard Stallman for starting the Free Software movement and for bringing us gcc and
all the other GNU tools.

Thanks to Linus Torvolds for bring us Linux.

Thanks to all the Free Software programmers. Without being able to peek at your code, and in
some cases, take parts of it, this project would have been much more difficult.

Thanks to John Walker for suggesting this project, giving it a name, contributing software he has
written, and for his programming efforts on Bacula as well as having acted as a constant
sounding board and source of ideas.

Thanks to the apcupsd project where I started my Free Software efforts, and from which I was
able to borrow some ideas and code that I had written.

Thanks to Dan Langille for the incredible amount of testing he did on FreeBSD. His
perseverance is truly remarkable.

Thanks to Phil Stracchino for writing the gnome−console ConsoleFont configuration command.

Thanks to Nic Bellamy for providing the bacula−dir.conf file that he uses to implement daily
tape rotation using multiple Pools.

Thanks to Johan Decock for providing numerous corrections to the manual.

Thanks to all the Bacula users, especially those of you who have contributed ideas, bug reports,
patches, and new features.

The original variable expansion code used in the LabelFormat comes from the Open Source
Software Project (www.ossp.org). It has been adapted and extended for use in Bacula.

For all those who I have left out, please send me a reminder, and in any case, thanks for your
contribution.

Copyrights and Trademarks

Certain words and/or products are Copyrighted or Trademarked such as Windows (by
Microsoft). Since they are numerous, and we are not necessarily aware of the details of each, we
don't try to list them here. However, we acknowledge all such Copyrights and Trademarks, and if
any copyright or trademark holder wishes a specific acknowledgment, notify us, and we will be
happy to add it as appropriate.

Thanks 311

Security Issues Index Bugs

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Thanks Index Bacula Director Services

Bacula Storage Management System

Thanks 312

http://www.bacula.org/

Bacula Bugs
Well there certainly are bugs, and one day when additional man/woman power exists on the
Bacula project, they will be reported here, but for the moment, you can view bugs submitted by
users on the Bacula Source Forge bug list, and any serious bugs of which we are aware, we
personally post to the Source Forge bug list.

All we can say is that Bacula is amazing robust considering the amount of code and complexity
of its tasks.

A "raw" list of the current known issues can be found in kernstodo in the main Bacula source
directory.

Thanks Index Bacula Director Services

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Bugs Index Storage Daemon Design

Bacula Bugs 313

http://sourceforge.net/tracker/?group_id=50727&func=browse
http://www.bacula.org/

Director Services Daemon

General

This chapter is intended to be a technical discussion of the Director services and as such is not
targeted at end users but rather at developers and system administrators that want or need to
know more of the working details of Bacula.

The Bacula Director services consist of the program that supervises all the backup and restore
operations.

To be written ...

Bugs Index Storage Daemon Design

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Bacula Director Services Index Bacula File Services

Director Services Daemon 314

http://www.bacula.org/

Storage Daemon Design

General

This chapter is intended to be a technical discussion of the Storage daemon services and as such
is not targeted at end users but rather at developers and system administrators that want or need
to know more of the working details of Bacula.

Introduction

The Bacula Storage daemon provides storage resources to a Bacula installation. An individual
Storage daemon is associated with a physical permanent storage device (for example, a tape
drive, CD writer, tape changer or jukebox, etc.), and may employ auxiliary storage resources
(such as space on a hard disk file system) to increase performance and/or optimize use of the
permanent storage medium.

Any number of storage daemons may be run on a given machine; each associated with an
individual storage device connected to it, and BACULA operations may employ storage
daemons on any number of hosts connected by a network, local or remote. The ability to employ
remote storage daemons (with appropriate security measures) permits automatic off−site backup,
possibly to publicly available backup repositories.

Development Outline

In order to provide a high performance backup and restore solution that scales to very large
capacity devices and networks, the storage daemon must be able to extract as much performance
from the storage device and network with which it interacts. In order to accomplish this, storage
daemons will eventually have to sacrifice simplicity and painless portability in favor of
techniques which improve performance. My goal in designing the storage daemon protocol and
developing the initial prototype storage daemon is to provide for these additions in the future,
while implementing an initial storage daemon which is very simple and portable to almost any
POSIX−like environment. This original storage daemon (and its evolved descendants) can serve
as a portable solution for non−demanding backup requirements (such as single servers of modest
size, individual machines, or small local networks), while serving as the starting point for
development of higher performance configurable derivatives which use techniques such as
POSIX threads, shared memory, asynchronous I/O, buffering to high−speed intermediate media,
and support for tape changers and jukeboxes.

Connections and Sessions

A client connects to a storage server by initiating a conventional TCP connection. The storage
server accepts the connection unless its maximum number of connections has been reached or the
specified host is not granted access to the storage server. Once a connection has been opened, the
client may make any number of Query requests, and/or initiate (if permitted), one or more
Append sessions (which transmit data to be stored by the storage daemon) and/or Read sessions
(which retrieve data from the storage daemon).

Most requests and replies sent across the connection are simple ASCII strings, with status replies

Storage Daemon Design 315

prefixed by a four digit status code for easier parsing. Binary data appear in blocks stored and
retrieved from the storage. Any request may result in a single−line status reply of
"3201 Notification pending", which indicates the client must send a "Query
notification" request to retrieve one or more notifications posted to it. Once the notifications have
been returned, the client may then resubmit the request which resulted in the 3201 status.

The following descriptions omit common error codes, yet to be defined, which can occur from
most or many requests due to events like media errors, restarting of the storage daemon, etc.
These details will be filled in, along with a comprehensive list of status codes along with which
requests can produce them in an update to this document.

Append Requests

append open session = <JobId> [<Password>]
A data append session is opened with the Job ID given by JobId with client password (if
required) given by Password. If the session is successfully opened, a status of 3000 OK
is returned with a "ticket = number" reply used to identify subsequent messages in
the session. If too many sessions are open, or a conflicting session (for example, a read
in progress when simultaneous read and append sessions are not permitted), a status of
"3502 Volume busy" is returned. If no volume is mounted, or the volume mounted
cannot be appended to, a status of "3503 Volume not mounted" is returned.

append data = <ticket−number>
If the append data is accepted, a status of 3000 OK data address =
<IPaddress> port = <port> is returned, where the IPaddress and port
specify the IP address and port number of the data channel. Error status codes are
3504 Invalid ticket number and 3505 Session aborted, the latter of
which indicates the entire append session has failed due to a daemon or media error.
Once the File daemon has established the connection to the data channel opened by the
Storage daemon, it will transfer a header packet followed by any number of data packets.
The header packet is of the form:

<file−index> <stream−id> <info>

The details are specified in the Daemon Protocol section of this document.

*append abort session = <ticket−number>
The open append session with ticket ticket−number is aborted; any blocks not yet written
to permanent media are discarded. Subsequent attempts to append data to the session will
receive an error status of 3505 Session aborted.

append end session = <ticket−number>
The open append session with ticket ticket−number is marked complete; no further
blocks may be appended. The storage daemon will give priority to saving any buffered
blocks from this session to permanent media as soon as possible.

append close session = <ticket−number>
The append session with ticket ticket is closed. This message does not receive an
3000 OK reply until all of the content of the session are stored on permanent media, at
which time said reply is given, followed by a list of volumes, from first to last, which
contain blocks from the session, along with the first and last file and block on each

Bacula Storage Management System

Append Requests 316

containing session data and the volume session key identifying data from that session in
lines with the following format:
Volume = <Volume−id> <start−file> <start−block> <end−file>
<end−block> <volume−session−id>where Volume−id is the volume label,
start−file and start−block are the file and block containing the first data from that
session on the volume, end−file and end−block are the file and block with the last data
from the session on the volume and volume−session−id is the volume session ID for
blocks from the session stored on that volume.

Read Requests

Read open session = <JobId> <Volume−id> <start−file> <start−block> <end−file>
<end−block> <volume−session−id> <password>

where Volume−id is the volume label, start−file and start−block are the file and block
containing the first data from that session on the volume, end−file and end−block are the
file and block with the last data from the session on the volume and volume−session−id
is the volume session ID for blocks from the session stored on that volume.
If the session is successfully opened, a status of

3100 OK Ticket = number"

is returned with a reply used to identify subsequent messages in the session. If too many
sessions are open, or a conflicting session (for example, an append in progress when
simultaneous read and append sessions are not permitted), a status of
"3502 Volume busy" is returned. If no volume is mounted, or the volume mounted
cannot be appended to, a status of "3503 Volume not mounted" is returned. If no
block with the given volume session ID and the correct client ID number appears in the
given first file and block for the volume, a status of "3505 Session not found" is
returned.

Read data = <Ticket> > <Block>
The specified Block of data from open read session with the specified Ticket number is
returned, with a status of 3000 OK followed by a "Length = size" line giving the
length in bytes of the block data which immediately follows. Blocks must be retrieved in
ascending order, but blocks may be skipped. If a block number greater than the largest
stored on the volume is requested, a status of "3201 End of volume" is returned. If
a block number greater than the largest in the file is requested, a status of
"3401 End of file" is returned.

Read close session = <Ticket>
The read session with Ticket number is closed. A read session may be closed at any
time; you needn't read all its blocks before closing it.

by John Walker
January 30th, MM

Bacula Storage Management System

Read Requests 317

http://www.fourmilab.ch/

Bacula Director Services Index Bacula File Services

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Storage Daemon Design Index Bacula Catalog Services

Bacula Storage Management System

Read Requests 318

http://www.bacula.org/

File Services Daemon

General

Please note, this section is somewhat out of date as the code has evolved significantly. The basic
idea has not changed though.

This chapter is intended to be a technical discussion of the File daemon services and as such is
not targeted at end users but rather at developers and system administrators that want or need to
know more of the working details of Bacula.

The Bacula File Services consist of the programs that run on the system to be backed up and
provide the interface between the Host File system and Bacula −− in particular, the Director and
the Storage services.

When time comes for a backup, the Director gets in touch with the File daemon on the client
machine and hands it a set of "marching orders" which, if written in English, might be something
like the following:

OK, File daemon, it's time for your daily incremental backup. I want you to get in touch with the
Storage daemon on host archive.mysite.com and perform the following save operations with the
designated options. You'll note that I've attached include and exclude lists and patterns you
should apply when backing up the file system. As this is an incremental backup, you should save
only files modified since the time you started your last backup which, as you may recall, was
2000−11−19−06:43:38. Please let me know when you're done and how it went. Thank you.

So, having been handed everything it needs to decide what to dump and where to store it, the File
daemon doesn't need to have any further contact with the Director until the backup is complete
providing there are no errors. If there are errors, the error messages will be delivered
immediately to the Director. While the backup is proceeding, the File daemon will send the file
coordinates and data for each file being backed up to the Storage daemon, which will in turn pass
the file coordinates to the Director to put in the catalog.

During a Verify of the catalog, the situation is different, since the File daemon will have an
exchange with the Director for each file, and will not contact the Storage daemon.

A Restore operation will be very similar to the Backup except that during the Restore the
Storage daemon will not send storage coordinates to the Director since the Director presumably
already has them. On the other hand, any error messages from either the Storage daemon or File
daemon will normally be sent directly to the Directory (this, of course, depends on how the
Message resource is defined).

Commands Received from the Director for a Backup

To be written ...

Commands Received from the Director for a Restore

To be written ...

File Services Daemon 319

Storage Daemon Design Index Bacula Catalog Services

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Bacula File Services Index Internal Component Designs

Bacula Storage Management System

File Services Daemon 320

http://www.bacula.org/

Catalog Services

General

This chapter is intended to be a technical discussion of the Catalog services and as such is not
targeted at end users but rather at developers and system administrators that want or need to
know more of the working details of Bacula.

The Bacula Catalog services consist of the programs that provide the SQL database engine for
storage and retrieval of all information concerning files that were backed up and their locations
on the storage media.

We have investigated the possibility of using the following SQL engines for Bacula: Beagle,
mSQL, GNU SQL, PostgreSQL, and MySQL. Each presents certain problems with either
licensing or maturity. At present, we have chosen for development purposes to use MySQL and
SQLite. MySQL was chosen because it is fast, proven to be reliable, widely used, and actively
being developed. In addition, the current version of MySQL is released under the GNU GPL
license. SQLite was chosen because it is small, efficient, and can be directly embedded in Bacula
thus requiring much less effort from the system administrator or person building Bacula. In our
testing SQLite has performed very well, and for the functions that we use, it has never
encountered any errors. Our experience using SQLite is, however, somewhat limited at this time
(24 March 2002) compared to MySQL.

The Bacula SQL code has been written in a manner that will allow it to be easily modified to
support any of the current SQL database systems on the market (for example: PostgreSQL,
mSQL, iODBC, unixODBC, Solid, OpenLink ODBC, EasySoft ODBC, InterBase, Oracle8,
Oracle7, and DB2).

If you do not specify either −−with−mysql or −−with−sqlite on the ./configure line, Bacula will
use its minimalist internal database. This is not recommended except for some developers. At the
current time, this internal database supports most of the features needed by Bacula (job records,
pool records, media records, ...). However, it does not currently keep track of the filenames saved
for each job nor permit any SQL command. In addition, there is no means for doing a retention
command on the internal database (i.e. no way to trim the growing size of the database).

Filenames and Maximum Filename Length

On Kern's Linux RedHat 7.1 development system, there are approximately 90,000 files, of which
149 have a filename length (including full path) greater than 100 characters. The maximum
filename length found on this system is 133 bytes.

In general, either MySQL or SQLite permit storing arbitrary long path names and file names in
the catalog database. In practice, there are still one or two places in the Catalog interface code
that restrict the maximum path length to 512 characters and the maximum file name length to
512 characters. These restrictions will be removed in the next major release. Please note, these
restrictions apply only to the Catalog database and thus to your ability to list online the files
saved during any job. All information received and stored by the Storage daemon (normally on
tape) allows and handles arbitrarily long path and filenames.

Catalog Services 321

Installing and Configuring MySQL

For the details of installing and configuring MySQL, please see the Installing and Configuring
MySQL chapter of this manual.

Installing and Configuring SQLite

For the details of installing and configuring SQLite, please see the Installing and Configuring
SQLite chapter of this manual.

Internal Bacula Catalog

Please see the Internal Bacula Database chapter of this manual for more details.

Database Table Design

All discussions that follow pertain to the MySQL database. The details for the SQLite database
are essentially identical except for that all fields in the SQLite database are stored as ASCII text
and some of the database creation statements are a bit different. The details of the internal Bacula
catalog are not discussed here.

Because the Catalog database may contain very large amounts of data for large sites, we have
made a modest attempt to normalize the data tables to reduce redundant information. While
reducing the size of the database significantly, it does, unfortunately, add some complications to
the structures.

In simple terms, the Catalog database must contain a record of all Jobs run by Bacula, and for
each Job, it must maintain a list of all files saved, with their File Attributes (permissions, create
date, ...), and the location and Media on which the file is stored. This is seemingly a simple task,
but it represents a huge amount interlinked data. Note: the list of files and their attributes is not
maintained when using the internal Bacula database. The data stored in the File records, which
allows the user or administrator to obtain a list of all files backed up during a job, is by far the
largest volume of information put into the Catalog database.

Although the Catalog database has been designed to handle backup data for multiple clients,
some users may want to maintain multiple databases, one for each machine to be backed up. This
reduces the risk of confusion of accidental restoring a file to the wrong machine as well as
reducing the amount of data in a single database, thus increasing efficiency and reducing the
impact of a lost or damaged database.

Sequence of Creation of Records for a Save Job

Start with StartDate, ClientName, Filename, Path, Attributes, MediaName, MediaCoordinates.
(PartNumber, NumParts). In the steps below, "Create new" means to create a new record whether
or not it is unique. "Create unique" means each record in the database should be unique. Thus,
one must first search to see if the record exists, and only if not should a new one be created,
otherwise the existing RecordId should be used.

Create new Job record with StartDate; save JobId1.

Bacula Storage Management System

Installing and Configuring MySQL 322

Create unique Media record; save MediaId2.
Create unique Client record; save ClientId3.
Create unique Filename record; save FilenameId4.
Create unique Path record; save PathId5.
Create unique Attribute record; save AttributeId
store ClientId, FilenameId, PathId, and Attributes

6.

Create new File record
store JobId, AttributeId, MediaCoordinates, etc

7.

Repeat steps 4 through 8 for each file8.
Create a JobMedia record; save MediaId9.
Update Job record filling in EndDate and other Job statistics10.

Database Tables

Filename

Column Name Data Type Remark

FilenameId integer Primary Key

Name Blob Filename

The Filename table shown above contains the name of each file backed up with the path
removed. If different directories or machines contain the same filename, only one copy will be
saved in this table.

Path

Column Name Data Type Remark

PathId integer Primary Key

Path Blob Full Path

The Path table contains shown above the path or directory names of all directories on the system
or systems. The filename and any MSDOS disk name are stripped off. As with the filename, only
one copy of each directory name is kept regardless of how many machines or drives have the
same directory. These path names should be stored in Unix path name format.

Some simple testing on a Linux file system indicates that separating the filename and the path
may be more complication than is warranted by the space savings. For example, this system has a
total of 89,097 files, 60,467 of which have unique filenames, and there are 4,374 unique paths.

Finding all those files and doing two stats() per file takes an average wall clock time of 1 min 35
seconds on a 400MHz machine running RedHat 6.1 Linux.

Finding all those files and putting them directly into a MySQL database with the path and
filename defined as TEXT, which is variable length up to 65,535 characters takes 19 mins 31
seconds and creates a 27.6 MByte database.

Bacula Storage Management System

Database Tables 323

Doing the same thing, but inserting them into Blob fields with the filename indexed on the first
30 characters and the path name indexed on the 255 (max) characters takes 5 mins 18 seconds
and creates a 5.24 MB database. Rerunning the job (with the database already created) takes
about 2 mins 50 seconds.

Running the same as the last one (Path and Filename Blob), but Filename indexed on the first 30
characters and the Path on the first 50 characters (linear search done there after) takes 5 mins on
the average and creates a 3.4 MB database. Rerunning with the data already in the DB takes 3
mins 35 seconds.

Finally, saving only the full path name rather than splitting the path and the file, and indexing it
on the first 50 characters takes 6 mins 43 seconds and creates a 7.35 MB database.

File

Column Name Data Type Remark

FileId integer Primary Key

FileIndex integer The sequential file number in the Job

JobId integer Link to Job Record

PathId integer Link to Path Record

FilenameId integer Link to Filename Record

MarkId integer Used to mark files during Verify Jobs

LStat tinyblob File attributes in base64 encoding

MD5 tinyblob MD5 signature in base64 encoding

The File table shown above contains one entry for each file backed up by Bacula. Thus a file that
is backed up multiple times (as is normal) will have multiple entries in the File table. This will
probably be the table with the most number of records. Consequently, it is essential to keep the
size of this record to an absolute minimum. At the same time, this table must contain all the
information (or pointers to the information) about the file and where it is backed up. Since a file
may be backed up many times without having changed, the path and filename are stored in
separate tables.

This table contains by far the largest amount of information in the Catalog database, both from
the stand point of number of records, and the stand point of total database size. As a
consequence, the user must take care to periodically reduce the number of File records using the
retention command in the Console program.

Job

Bacula Storage Management System

Database Tables 324

Column Name Data Type Remark

JobId integer Primary Key

Job tinyblob Unique Job Name

Name tinyblob Job Name

PurgedFiles tinyint Used by Bacula for purging/retention periods

Type binary(1) Job Type: Backup, Copy, Clone, Archive, Migration

Level binary(1) Job Level

ClientId integer Client index

JobStatus binary(1) Job Termination Status

SchedTime datetime Time/date when Job scheduled

StartTime datetime Time/date when Job started

EndTime datetime Time/date when Job ended

JobTDate bigint Start day in Unix format but 64 bits; used for Retention period.

VolSessionId integer Unique Volume Session ID

VolSessionTime integer Unique Volume Session Time

JobFiles integer Number of files saved in Job

JobBytes bigint Number of bytes saved in Job

JobErrors integer Number of errors during Job

JobMissingFiles integer Number of files not saved (not yet used)

PoolId integer Link to Pool Record

FileSetId integer Link to FileSet Record

PurgedFiles tiny integer Set when all File records purged

HasBase tiny integer Set when Base Job run

The Job table contains one record for each Job run by Bacula. Thus normally, there will be one
per day per machine added to the database. Note, the JobId is used to index Job records in the
database, and it often is shown to the user in the Console program. However, care must be taken
with its use as it is not unique from database to database. For example, the user may have a
database for Client data saved on machine Rufus and another database for Client data saved on
machine Roxie. In this case, the two database will each have JobIds that match those in another

Bacula Storage Management System

Database Tables 325

database. For a unique reference to a Job, see Job below.

The Name field of the Job record corresponds to the Name resource record given in the Director's
configuration file. Thus it is a generic name, and it will be normal to find many Jobs (or even all
Jobs) with the same Name.

The Job field contains a combination of the Name and the schedule time of the Job by the
Director. Thus for a given Director, even with multiple Catalog databases, the Job will contain a
unique name that represents the Job.

For a given Storage daemon, the VolSessionId and VolSessionTime form a unique identification
of the Job. This will be the case even if multiple Directors are using the same Storage daemon.

The Job Type (or simply Type) can have one of the following values:

Value Meaning

B Backup Job

V Verify Job

R Restore Job

C Console program (not in database)

D Admin Job

A Archive Job (not implemented)

The JobStatus field specifies how the job terminated, and can be one of the following:

Value Meaning

C Created but not yet running

R Running

B Blocked

T Terminated normally

E Terminated in Error

e Non−fatal error

f Fatal error

D Verify Differences

A Canceled by the user

Bacula Storage Management System

Database Tables 326

F Waiting on the File daemon

S Waiting on the Storage daemon

m Waiting for a new Volume to be mounted

M Waiting for a Mount

s Waiting for Storage resource

j Waiting for Job resource

c Waiting for Client resource

d Wating for Maximum jobs

t Waiting for Start Time

p Waiting for higher priority job to finish

FileSet

Column Name Data Type Remark

FileSetId integer Primary Key

FileSet tinyblob FileSet name

MD5 tinyblob MD5 checksum of FileSet

CreateTime datetime Time and date Fileset created

The FileSet table contains one entry for each FileSet that is used. The MD5 signature is kept to
ensure that if the user changes anything inside the FileSet, it will be detected and the new FileSet
will be used. This is particularly important when doing an incremental update. If the user deletes
a file or adds a file, we need to ensure that a Full backup is done prior to the next incremental.

JobMedia

Column Name Data Type Remark

JobMediaId integer Primary Key

JobId integer Link to Job Record

MediaId integer Link to Media Record

FirstIndex integer

Bacula Storage Management System

Database Tables 327

The index (sequence number) of the first file written for
this Job to the Media

LastIndex integer The index of the last file written for this Job to the Media

StartFile integer
The physical media (tape) file number of the first block
written for this Job

EndFile integer
The physical media (tape) file number of the last block
written for this Job

StartBlock integer The number of the first block written for this Job

EndBlock integer The number of the last block written for this Job

VolIndex integer The Volume use sequence number within the Job

The JobMedia table contains one entry for each volume written for the current Job. If the Job
spans 3 tapes, there will be three JobMedia records, each containing the information to find all
the files for the given JobId on the tape.

Media

Column Name Data Type Remark

MediaId integer Primary Key

VolumeName tinyblob Volume name

Slot integer Autochanger Slot number or zero

PoolId integer Link to Pool Record

MediaType tinyblob The MediaType supplied by the user

FirstWritten datetime Time/date when first written

LastWritten datetime Time/date when last written

LabelDate datetime Time/date when tape labeled

VolJobs integer Number of jobs written to this media

VolFiles integer Number of files written to this media

VolBlocks integer Number of blocks written to this media

VolMounts integer Number of time media mounted

VolBytes bigint Number of bytes saved in Job

Bacula Storage Management System

Database Tables 328

VolErrors integer Number of errors during Job

VolWrites integer Number of writes to media

MaxVolBytes bigint Maximum bytes to put on this media

VolCapacityBytes bigint Capacity estimate for this volume

VolStatus enum
Status of media: Full, Archive, Append, Recycle,
Read−Only, Disabled, Error, Busy

Recycle tinyint Whether or not Bacula can recycle the Volumes: Yes, No

VolRetention bigint 64 bit seconds until expiration

VolUseDuration bigint 64 bit seconds volume can be used

MaxVolJobs integer maximum jobs to put on Volume

MaxVolFiles integer maximume EOF marks to put on Volume

The Volume table (internally referred to as the Media table) contains one entry for each volume,
that is each tape, cassette (8mm, DLT, DAT, ...), or file on which information is or was backed
up. There is one Volume record created for each of the NumVols specified in the Pool resource
record.

Pool

Column Name Data Type Remark

PoolId integer Primary Key

Name Tinyblob Pool Name

NumVols Integer Number of Volumes in the Pool

MaxVols Integer Maximum Volumes in the Pool

UseOnce tinyint Use volume once

UseCatalog tinyint Set to use catalog

AcceptAnyVolume tinyint Accept any volume from Pool

VolRetention bigint 64 bit seconds to retain volume

VolUseDuration bigint 64 bit seconds volume can be used

MaxVolJobs integer max jobs on volume

Bacula Storage Management System

Database Tables 329

MaxVolFiles integer max EOF marks to put on Volume

MaxVolBytes bigint max bytes to write on Volume

AutoPrune tinyint Yes/no for autopruning

Recycle tinyint Yes/no for allowing auto recycling of Volume

PoolType enum Backup, Copy, Cloned, Archive, Migration

LabelFormat Tinyblob Label format

The Pool table contains one entry for each media pool controlled by Bacula in this database. One
media record exists for each of the NumVols contained in the Pool. The PoolType is a Bacula
defined keyword. The MediaType is defined by the administrator, and corresponds to the
MediaType specified in the Director's Storage definition record. The CurrentVol is the sequence
number of the Media record for the current volume.

Client

Column Name Data Type Remark

ClientId integer Primary Key

Name TinyBlob File Services Name

UName TinyBlob uname −a from Client (not yet used)

AutoPrune tinyint Yes/no for autopruning

FileRetention bigint 64 bit seconds to retain Files

JobRetention bigint 64 bit seconds to retain Job

The Client table contains one entry for each machine backed up by Bacula in this database.
Normally the Name is a fully qualified domain name.

Client

Column Name Data Type Remark

UnsavedId integer Primary Key

JobId integer JobId corresponding to this record

PathId integer Id of path

FilenameId integer Id of filename

Bacula Storage Management System

Database Tables 330

The UnsavedFiles table contains one entry for each file that was not saved. Note! This record is
not yet implemented.

Client

Column Name Data Type Remark

Counter tinyblob Counter name

MinValue integer Start/Min value for counter

MaxValue integer Max value for counter

CurrentValue integer Current counter value

WrapCounter tinyblob Name of another counter

The Counter table contains one entry for each permanent counter defined by the user.

Client

Column Name Data Type Remark

VersionId integer Primary Key

The Version table defines the Bacula database version number. Bacula checks this number
before reading the database to ensure that it is compatible with the Bacula binary file.

MySQL Table Definition

The commands used to create the MySQL tables are as follows:

USE bacula;
CREATE TABLE Filename (
 FilenameId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 Name BLOB NOT NULL,
 PRIMARY KEY(FilenameId),
 INDEX (Name(30))
);

CREATE TABLE Path (
 PathId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 Path BLOB NOT NULL,
 PRIMARY KEY(PathId),
 INDEX (Path(50))
);

Bacula Storage Management System

MySQL Table Definition 331

****FIXME**** make FileId BIGINT someday when MySQL works *****
CREATE TABLE File (
 FileId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 FileIndex INTEGER UNSIGNED NOT NULL,
 JobId INTEGER UNSIGNED NOT NULL REFERENCES Job,
 PathId INTEGER UNSIGNED NOT NULL REFERENCES Path,
 FilenameId INTEGER UNSIGNED NOT NULL REFERENCES Filename,
 MarkId INTEGER UNSIGNED NOT NULL DEFAULT 0,
 LStat TINYBLOB NOT NULL,
 MD5 TINYBLOB NOT NULL,
 PRIMARY KEY(FileId),
 INDEX (JobId),
 INDEX (PathId),
 INDEX (FilenameId)
);

CREATE TABLE Job (
 JobId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 Job TINYBLOB NOT NULL,
 Name TINYBLOB NOT NULL,
 Type BINARY(1) NOT NULL,
 Level BINARY(1) NOT NULL,
 ClientId INTEGER NOT NULL REFERENCES Client,
 JobStatus BINARY(1) NOT NULL,
 SchedTime DATETIME NOT NULL,
 StartTime DATETIME NOT NULL,
 EndTime DATETIME NOT NULL,
 JobTDate BIGINT UNSIGNED NOT NULL,
 VolSessionId INTEGER UNSIGNED NOT NULL,
 VolSessionTime INTEGER UNSIGNED NOT NULL,
 JobFiles INTEGER UNSIGNED NOT NULL,
 JobBytes BIGINT UNSIGNED NOT NULL,
 JobErrors INTEGER UNSIGNED NOT NULL,
 JobMissingFiles INTEGER UNSIGNED NOT NULL,
 PoolId INTEGER UNSIGNED NOT NULL REFERENCES Pool,
 FileSetId INTEGER UNSIGNED NOT NULL REFERENCES FileSet,
 PurgedFiles TINYINT NOT NULL DEFAULT 0,
 HasBase TINYINT NOT NULL DEFAULT 0,
 PRIMARY KEY(JobId),
 INDEX (Name(128))
);

#
CREATE TABLE FileSet (
 FileSetId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 FileSet TINYBLOB NOT NULL,
 MD5 TINYBLOB NOT NULL,
 CreateTime DATETIME NOT NULL,
 PRIMARY KEY(FileSetId)
);

CREATE TABLE JobMedia (
 JobMediaId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 JobId INTEGER UNSIGNED NOT NULL REFERENCES Job,
 MediaId INTEGER UNSIGNED NOT NULL REFERENCES Media,
 FirstIndex INTEGER UNSIGNED NOT NULL,
 LastIndex INTEGER UNSIGNED NOT NULL,
 StartFile INTEGER UNSIGNED NOT NULL,
 EndFile INTEGER UNSIGNED NOT NULL,
 StartBlock INTEGER UNSIGNED NOT NULL,

Bacula Storage Management System

MySQL Table Definition 332

 EndBlock INTEGER UNSIGNED NOT NULL,
 VolIndex INTEGER UNSIGNED NOT NULL,
 PRIMARY KEY(JobMediaId),
 INDEX (JobId, MediaId)
);

CREATE TABLE Media (
 MediaId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 VolumeName TINYBLOB NOT NULL,
 Slot INTEGER NOT NULL DEFAULT 0,
 PoolId INTEGER UNSIGNED NOT NULL REFERENCES Pool,
 MediaType TINYBLOB NOT NULL,
 FirstWritten DATETIME NOT NULL,
 LastWritten DATETIME NOT NULL,
 LabelDate DATETIME NOT NULL,
 VolJobs INTEGER UNSIGNED NOT NULL,
 VolFiles INTEGER UNSIGNED NOT NULL,
 VolBlocks INTEGER UNSIGNED NOT NULL,
 VolMounts INTEGER UNSIGNED NOT NULL,
 VolBytes BIGINT UNSIGNED NOT NULL,
 VolErrors INTEGER UNSIGNED NOT NULL,
 VolWrites INTEGER UNSIGNED NOT NULL,
 MaxVolBytes BIGINT UNSIGNED NOT NULL,
 VolCapacityBytes BIGINT UNSIGNED NOT NULL,
 VolStatus ENUM('Full', 'Archive', 'Append', 'Recycle', 'Purged',
 'Read−Only', 'Disabled', 'Error', 'Busy', 'Used', 'Cleaning') NOT NULL,
 Recycle TINYINT NOT NULL,
 VolRetention BIGINT UNSIGNED NOT NULL,
 VolUseDuration BIGINT UNSIGNED NOT NULL,
 MaxVolJobs INTEGER UNSIGNED NOT NULL,
 MaxVolFiles INTEGER UNSIGNED NOT NULL,
 PRIMARY KEY(MediaId),
 INDEX (PoolId)
);

CREATE TABLE Pool (
 PoolId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 Name TINYBLOB NOT NULL,
 NumVols INTEGER UNSIGNED NOT NULL,
 MaxVols INTEGER UNSIGNED NOT NULL,
 UseOnce TINYINT NOT NULL,
 UseCatalog TINYINT NOT NULL,
 AcceptAnyVolume TINYINT DEFAULT 0,
 VolRetention BIGINT UNSIGNED NOT NULL,
 VolUseDuration BIGINT UNSIGNED NOT NULL,
 MaxVolJobs INTEGER UNSIGNED NOT NULL,
 MaxVolFiles INTEGER UNSIGNED NOT NULL,
 MaxVolBytes BIGINT UNSIGNED NOT NULL,
 AutoPrune TINYINT DEFAULT 0,
 Recycle TINYINT DEFAULT 0,
 PoolType ENUM('Backup', 'Copy', 'Cloned', 'Archive', 'Migration') NOT NULL,
 LabelFormat TINYBLOB,
 UNIQUE (Name(128)),
 PRIMARY KEY (PoolId)
);

CREATE TABLE Client (
 ClientId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 Name TINYBLOB NOT NULL,

Bacula Storage Management System

MySQL Table Definition 333

 Uname TINYBLOB NOT NULL, /* full uname −a of client */
 AutoPrune TINYINT DEFAULT 0,
 FileRetention BIGINT UNSIGNED NOT NULL,
 JobRetention BIGINT UNSIGNED NOT NULL,
 UNIQUE (Name(128)),
 PRIMARY KEY(ClientId)
);

CREATE TABLE BaseFiles (
 BaseId INTEGER UNSIGNED AUTO_INCREMENT,
 JobId INTEGER UNSIGNED NOT NULL REFERENCES Job,
 FileId INTEGER UNSIGNED NOT NULL REFERENCES File,
 FileIndex INTEGER UNSIGNED,
 PRIMARY KEY(BaseId)
);

CREATE TABLE UnsavedFiles (
 UnsavedId INTEGER UNSIGNED AUTO_INCREMENT,
 JobId INTEGER UNSIGNED NOT NULL REFERENCES Job,
 PathId INTEGER UNSIGNED NOT NULL REFERENCES Path,
 FilenameId INTEGER UNSIGNED NOT NULL REFERENCES Filename,
 PRIMARY KEY (UnsavedId)
);

CREATE TABLE Version (
 VersionId INTEGER UNSIGNED NOT NULL
);

−− Initialize Version
INSERT INTO Version (VersionId) VALUES (6);

CREATE TABLE Counters (
 Counter TINYBLOB NOT NULL,
 MinValue INTEGER,
 MaxValue INTEGER,
 CurrentValue INTEGER,
 WrapCounter TINYBLOB NOT NULL,
 PRIMARY KEY (Counter(128))
);

Bacula File Services Index Internal Component Designs

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Bacula Catalog Services Index Bacula Developer Notes

Bacula Storage Management System

MySQL Table Definition 334

http://www.bacula.org/

Bacula Storage Management System

MySQL Table Definition 335

Bacula Internal Component Designs
Please note that some of this documents might be more or less out of date. Although these
documents will give you a good idea of the code base, for any specific information, please refer
to the source code.

Bacula Internal Component Design Documents

Developer Notes•
Porting Notes•
Regression Testing•
Bacula GUI Interface•
Intra−daemon Protocols•
Storage Media Format•
Memory Management Design•
Bacula Network Protocol•
Our MD5 Algorithm•
Smart Memory Allocation Routines•

Bacula Catalog Services Index Bacula Developer Notes

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Internal Component Designs Index Porting Notes

Bacula Internal Component Designs 336

http://www.bacula.org/

Bacula Developer Notes

General

This document is intended mostly for developers and describes the the general framework of
making Bacula source changes.

Contributions

Contributions from other programmers will be broken into two groups. The first are contributions
that are aids and not essential to Bacula. In general, these will be scripts or will go into and
examples or contributions directory.

The second class of contributions are those which will be integrated with Bacula and become an
essential part. Within this class of contributions, there are two hurdles to surmount. One is
getting your patch accepted, and two is dealing with copyright issues. The rest of this document
describes some of the requirements for such code.

Patches

Subject to the copyright hurdle described below, your patches should be sent in diff −u format,
which is the easiest for me to understand. If you plan on doing significant development work
over a period of time, after having your first patch reviewed and approved, you will be eligible
for having CVS access so that you can submit your changes directly to the CVS repository.

Copyrights

To avoid future problems concerning changing licensing or copyrights, all code contributions
more than a hand full of lines must be in the Public Domain or have the copyright assigned to
Kern Sibbald and John Walker as in the current code. This double copyright ownership ensures
that no single person controls the software. The author of the code should be clearly indicated,
and you must be extremely careful not to violate any copyrights or use other people's code
without acknowledging it. The purpose of this requirement is to avoid future problems copyright
problems. To understand on possible source of future problems, please examine the difficulties
Mozilla is having finding previous contributors at http://www.mozilla.org/MPL/missing.html.
The other important issue is to avoid copyright, patent, or intellectual property violations as are
currently (May 2003) being claimed by SCO against IBM.

Although the copyright will be held by Kern and John, each developer is expected to indicate
that he wrote and/or modified a particular module (or file) and any other sources.

Although we have absolutely no plans for any commercial venture, it would be ashame to totally
rule it out. Our desire is that if one day something commercial is developed around Bacula (as is
the case with MySQL, RedHat, Ximian, and other organizations), each developer will have an
opportunity to participate, at a minimum, proportional to his prior contributions. Again, we have
no current plans for creating any such commercial enterprise.

If you have any doubts about this, please don't hesitate to ask. Our (John and mine) track records
with Autodesk are easily available; early programmers/founders/contributors and later employees

Bacula Developer Notes 337

http://www.mozilla.org/MPL/missing.html

had substantial shares of the company, and no one founder had a controlling part of the company.
Even though Microsoft created many millionaires among early employees, the politics of
Autodesk (during our time at the helm) is in stark contrast to Microsoft where the majority of the
company is still tightly held among a few.

Items not needing a copyright assignment are: most small changes, enhancements, or bug fixes of
5−10 lines of code, and documentation.

Copyright Assignment

Since this is not a commercial enterprise, and I prefer to believe in everyone's good faith,
developers can assign the copyright by explicitly acknowledging that they do so in their first
submission.

Developing Bacula

Typically the simplest way to develop Bacula is to open one xterm window pointing to the
source directory you wish to update; a second xterm window at the top source directory level,
and a third xterm window at the bacula directory <top>/src/bacula. After making source changes
in one of the directories, in the top source directory xterm, build the source, and start the
daemons by entering:

make

and

./startit

then in the enter:

./console

or

./gnome−console

to start the Console program. Enter any commands for testing. For example: run kernsverify full.

Note, the instructions here to use ./startit are different from using a production system where the
administrator starts Bacula by entering ./bacula start. This difference allows a development
version of Bacula to be run on a computer at the same time that a production system is running.
The ./startit strip starts Bacula using a different set of configuration files, and thus permits
avoiding conflicts with any production system.

To make additional source changes, exit from the Console program, and in the top source
directory, stop the daemons by entering:

./stopit

then repeat the process.

Bacula Storage Management System

Copyright Assignment 338

Debugging

Probably the first thing to do is to turn on debug output.

A good place to start is with a debug level of 20 as in ./startit −d20. The startit command starts
all the daemons with the same debug level. Alternatively, you can start the appropriate daemon
with the debug level you want. If you really need more info, a debug level of 60 is not bad, and
for just about everything a level of 200.

Using a Debugger

If you have a serious problem such as a segmentation fault, it can usually be found quickly using
a good multiple thread debugger such as gdb. For example, suppose you get a segmentation
violation in bacula−dir. You might use the following to find the problem:

<start the Storage and File daemons>
cd dird
gdb ./bacula−dir
run −f −s −c ./dird.conf
<it dies with a segmentation fault>
where

The −f option is specified on the run command to inhibit dird from going into the background.
You may also want to add the −s option to the run command to disable signals which can
potentially interfere with the debugging.

As an alternative to using the debugger, each Bacula daemon has a built in back trace feature
when a serious error is encountered. It calls the debugger on itself, produces a back trace, and
emails the report to the developer. For more details on this, please see the chapter in this manual
entitled What To Do When Bacula Crashes (Kaboom).

Memory Leaks

Because Bacula runs routinely and unattended on client and server machines, it may run for a
long time. As a consequence, from the very beginning, Bacula uses SmartAlloc to ensure that
there are no memory leaks. To make detection of memory leaks effective, all Bacula code that
dynamically allocates memory MUST have a way to release it. In general when the memory is
no longer needed, it should be immediately released, but in some cases, the memory will be held
during the entire time that Bacula is executing. In that case, there MUST be a routine that can be
called at termination time that releases the memory. In this way, we will be able to detect
memory leaks. Be sure to immediately correct any and all memory leaks that are printed at the
termination of the daemons.

Special Files

Kern uses files named 1, 2, ... 9 with any extension as scratch files. Thus any files with these
names are subject to being rudely deleted at any time.

Bacula Storage Management System

Debugging 339

When Implementing Incomplete Code

Please identify all incomplete code with a comment that contains ***FIXME***, where there
are three asterisks (*) before and after the word FIXME (in capitals) and no intervening spaces.
This is important as it allows new programmers to easily recognize where things are partially
implemented.

Bacula Source File Structure

The distribution generally comes as a tar file of the form bacula.x.y.z.tar.gz where x, y, and z
are the version, release, and update numbers respectively.

Once you detar this file, you will have a directory structure as follows:

|− bacula (main source directory containing configuration
 | and installation files)
 |− autoconf (automatic configuration files, not normally used
 | by users)
 |− doc (documentation directory)
 |− home−page (Bacula's home page source)
 |− html−manual (html document directory)
 |− techlogs (Technical development notes);
 |− intl (programs used to translate)
 |− platforms (OS specific installation files)
 |− redhat (Red Hat installation)
 |− solaris (Sun installation)
 |− freebsd (FreeBSD installation)
 |− irix (Irix installation −− not tested)
 |− unknown (Default if system not identified)
 |− po (translations of source strings)
 |− src (source directory; contains global header files)
 |− cats (SQL catalog database interface directory)
 |− console (bacula user agent directory)
 |− dird (Director daemon)
 |− filed (Unix File daemon)
 |− win32 (Win32 files to make bacula−fd be a service)

 |− findlib (Unix file find library for File daemon)
 |− gnome−console (GNOME version of console program)
 |− lib (General Bacula library)
 |− stored (Storage daemon)
 |− tconsole (Tcl/tk console program −− not yet working)
 |− testprogs (test programs −− normally only in Kern's tree)
 |− tools (Various tool programs)
|− regress (Regression scripts)
 |− bin (temporary directory to hold Bacula installed binaries)
 |− build (temporary directory to hold Bacula source)
 |− scripts (scripts and .conf files)
 |− tests (test scripts)
 |− tmp (temporary directory for temp files)

Header Files

Please carefully follow the scheme defined below as it permits in general only two header file
includes per C file, and thus vastly simplifies programming. With a large complex project like
Bacula, it isn't always easy to ensure that the right headers are invoked in the right order (there

Bacula Storage Management System

Bacula Source File Structure 340

are a few kludges to make this happen −− i.e. in a few include files because of the chicken and
egg problem, certain references to typedefs had to be replaced with void).

Every file should include bacula.h. It pulls in just about everything, with very few exceptions. If
you have system dependent ifdefing, please do it in baconfig.h. The version number and date are
kept in version.h.

Each of the subdirectories (console, cats, dird, filed, findlib, lib, stored, ...) contains a single
directory dependent include file generally the name of the directory, which should be included
just after the include of bacula.h. This file (for example, for the dird directory, it is dird.h)
contains either definitions of things generally needed in this directory, or it includes the
appropriate header files. It always includes protos.h. See below.

Each subdirectory contains a header file named protos.h, which contains the prototypes for
subroutines exported by files in that directory. protos.h is always included by the main directory
dependent include file.

Programming Standards

For the most part, all code should be written in C unless there is a burning reason to use C++,
and then only the simplest C++ constructs will be used. Note, Bacula is slowly evolving to use
more and more C++.

Code should have some documentation −− not a lot, but enough so that I can understand it. Look
at the current code, and you will see that I document more than most, but am definitely not a
fanatic.

I prefer simple linear code where possible. Gotos are strongly discouraged except for handling an
error to either bail out or to retry some code, and such use of gotos can vastly simplify the
program.

Indenting Standards

I cannot stand code indented 8 columns at a time. This makes the code unreadable. Even 4 at a
time uses a lot of space, so I have adopted indenting 3 spaces at every level. Note, indention is
the visual appearance of the source on the page, while tabbing is replacing a series of 8 spaces
with a tab character.

Braces are required in all if statements (missing in some very old code). To avoid generating too
many lines, the first brace appears on the first line (e.g. of an if), and the closing brace is on a
line by itself. E.g.

 if (abc) {
 some_code;
 }

Just follow the convention in the code. Originally I indented case clauses under a switch(), but
now I prefer non−indented cases.

 switch (code) {
 case 'A':

Bacula Storage Management System

Programming Standards 341

 do something
 break;
 case 'B':
 again();
 break;
 default:
 break;
 }

Avoid using // style comments except for temporary code or turning off debug code. Standard C
comments are preferred (this also keeps the code closer to C).

Attempt to keep all lines less than 85 characters long so that the whole line of code is readable at
one time. This is not a rigid requirement.

Always put a brief description at the top of any new file created describing what it does and
including the date it was first written. Also, include the copyright notice that is in src/c.

In general you should have two includes at the top of the file. One is #include "bacula.h" and
the second is an include for the particular directory the code is in, for example, #include
"dird.h". Sometimes additional includes are needed, but this should be rare.

In general (except for self−contained packages), prototypes should all be put in protos.h in each
directory.

Always put space around assignment and comparison operators.

 a = 1;
 if (b>= 2) {
 cleanup();
 }

but your can compress things in a for statement:

 for (i=0; i <del.num_ids; i++) {
 ...

Don't overuse the inline if (?:). A full if is preferred, except in a print statement, e.g.:

 if (ua−>verbose &del.num_del != 0) {
 bsendmsg(ua, _("Pruned %d %s on Volume %s from catalog.\n"), del.num_del,
 del.num_del == 1 ? "Job" : "Jobs", mr−>VolumeName);
 }

Leave a certain amount of debug code (Dmsg) in code you submit, so that future problems can be
identified. This is particularly true for complicated code likely to break. However, try to keep the
debug code to a minimum to avoid bloating the program and above all to keep the code readable.

Please keep the same style in all new code you develop. If you include code previously written,
you have the option of leaving it with the old indenting or re−indenting it. If the old code is
indented with 8 spaces, then please re−indent it to Bacula standards.

If you are using vim, simply set your tabstop to 8 and your shiftwidth to 3.

Bacula Storage Management System

Programming Standards 342

Tabbing

Tabbing (inserting the tab character in place of spaces) is as normal on all Unix systems −− a tab
is converted into 8 spaces. My editor converts strings of spaces to tabs automatically −− this
results in significant compression of the files. Thus, you can remove tabs by replacing them with
spaces if you wish. Please don't confuse tabbing (use of tab characters) with indenting (visual
alignment of the code).

Message Classes

Currently, there are four classes of messages: Debug, Error, Job, and Memory.

Debug Messages

Debug messages are designed to be turned on at a specified debug level and are always sent to
STDOUT. There are designed to only be used in the development debug process. They are coded
as:

DmsgN(level, message, arg1, ...)

where the N is a number indicating how many arguments are to be substituted into the message
(i.e. it is a count of the number arguments you have in your message −− generally the number of
percent signs (%)). level is the debug level at which you wish the message to be printed. message
is the debug message to be printed, and arg1, ... are the arguments to be substituted. Since not all
compilers support #defines with varargs, you must explicitly specify how many arguments you
have.

When the debug message is printed, it will automatically be prefixed by the name of the daemon
which is running, the filename where the Dmsg is, and the line number within the file.

Some actual examples are:

Dmsg2(20, "MD5len=%d MD5=%s\n", strlen(buf), buf);

Dmsg1(9, "Created client %s record\n", client−>hdr.name);

Error Messages

Error messages are messages that are related to the daemon as a whole rather than a particular
job. For example, an out of memory condition my generate an error message. They are coded as:

EmsgN(error−code, level, message, arg1, ...)

As with debug messages, you must explicitly code the of arguments to be substituted in the
message. error−code indicates the severity or class of error, and it may be one of the following:

M_ABORT
Causes the daemon to immediately abort. This should be used only in
extreme cases. It attempts to produce a traceback.

Bacula Storage Management System

Tabbing 343

M_ERROR_TERM
Causes the daemon to immediately terminate. This should be used only
in extreme cases. It does not produce a traceback.

M_FATAL
Causes the daemon to terminate the current job, but the daemon keeps
running

M_ERROR Reports the error. The daemon and the job continue running

M_WARNING Reports an warning message. The daemon and the job continue running

M_INFO Reports an informational message.

There are other error message classes, but they are in a state of being redesigned or deprecated,
so please do not use them. Some actual examples are:

Emsg1(M_ABORT, 0, "Cannot create message thread: %s\n", strerror(status));

Emsg3(M_WARNING, 0, "Connect to File daemon %s at %s:%d failed. Retrying ...\n",
client−>hdr.name, client−>address, client−>port);

Emsg3(M_FATAL, 0, "bdird<filed: bad response from Filed to %s command: %d %s\n", cmd, n,
strerror(errno));

Job Messages

Job messages are messages that pertain to a particular job such as a file that could not be saved,
or the number of files and bytes that were saved.

Memory Messages

Memory messages are messages that are edited into a memory buffer. Generally they are used in
low level routines such as the low level device file dev.c in the Storage daemon or in the low
level Catalog routines. These routines do not generally have access to the Job Control Record
and so they return error messages reformatted in a memory buffer. Mmsg() is the way to do this.

Internal Component Designs Index Porting Notes

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Bacula Developer Notes Index Bacula Regression Testing

Bacula Storage Management System

Job Messages 344

http://www.bacula.org/

Bacula Storage Management System

Job Messages 345

Bacula Porting Notes

General

This document is intended mostly for developers who wish to port Bacula to a system that is not
officially supported.

It is hoped that Bacula clients will eventually run on every imaginable system that needs backing
up (perhaps even a Palm). It is also hoped that the Bacula Directory and Storage daemons will
run on every system capable of supporting them.

Requirements

In General, the following holds true:

Bacula has been compiled and run on Linux RedHat, FreeBSD, and Solaris systems.•
In addition, clients exist on Win32 (Cygwin), and Irix•
It requires GNU C++ to compile. You can try with other compilers, but you are on your
own. The Irix client is built with the Irix complier, but, in general, you will need GNU.

•

Your compiler must provide support for 64 bit signed and unsigned integers.•
You will need a recent copy of the autoconf tools loaded on your system (version 2.13
or later). The autoconf tools are used to build the configuration program, but are not part
of the Bacula source distribution.

•

There are certain third party packages that Bacula needs. Except for MySQL, they can
all be found in the depkgs and depkgs1 releases.

•

If you want to build the Win32 binaries, you will need the full Cygwin 1.3.20 release.
Although all components build (console has some warnings), only the File daemon has
been tested. Please note that if you attempt to build Bacula on any other version of
Cygwin, particularly previous versions, you will be on your own.

•

Bacula requires a good implementation of pthreads to work.•
The source code has been written with portability in mind and is mostly POSIX
compatible. Thus porting to any POSIX compatible operating system should be
relatively easy.

•

Steps to Take

The first step is to ensure that you have version 2.13 or later of the autoconf tools
loaded. You can skip this step, but making changes to the configuration program will be
difficult or impossible.

•

The run a ./configure command in the main source directory and examine the output. It
should look something like the following:

•

Configuration on Mon Oct 28 11:42:27 CET 2002:

 Host: i686−pc−linux−gnu −− redhat 7.3
 Bacula version: 1.27 (26 October 2002)
 Source code location: .
 Install binaries: /sbin
 Install config files: /etc/bacula
 C Compiler: gcc

Bacula Porting Notes 346

 C++ Compiler: c++
 Compiler flags: −g −O2
 Linker flags:
 Libraries: −lpthread
 Statically Linked Tools: no
 Database found: no
 Database type: Internal
 Database lib:

 Job Output Email: root@localhost
 Traceback Email: root@localhost
 SMTP Host Address: localhost
 Director Port 9101
 File daemon Port 9102
 Storage daemon Port 9103
 Working directory /etc/bacula/working
 SQL binaries Directory

 Large file support: yes
 readline support: yes
 cweb support: yes /home/kern/bacula/depkgs/cweb
 TCP Wrappers support: no
 ZLIB support: yes
 enable−smartalloc: yes
 enable−gnome: no
 gmp support: yes

The details depend on your system. The first thing to check is that it properly identified
your host on the Host: line. The first part (added in version 1.27) is the GNU four part
identification of your system. The part after the −− is your system and the system
version. Generally, if your system is not yet supported, you must correct these.
If the ./configure does not function properly, you must determine the cause and fix it.
Generally, it will be because some required system routine is not available on your
machine.

•

To correct problems with detection of your system type or with routines and libraries,
you must edit the file <bacula−src>/autoconf/configure.in. This is the "source" from
which configure is built. In general, most of the changes for your system will be made in
autoconf/aclocal.m4 in the routine BA_CHECK_OPSYS or in the routine
BA_CHECK_OPSYS_DISTNAME. I have already added the necessary code for most
systems, but if yours shows up as unknown you will need to make changes. Then as
mentioned above, you will need to set a number of system dependent items in
configure.in in the case statement at approximately line 1050 (depending on the Bacula
release.

•

The items to in the case statement that corresponds to your system are the following:
DISTVER −− set to the version of your operating system. Typically some form
of uname obtains it.

♦

TAPEDRIVE −− the default tape drive. Not too important as the user can set it
as an option.

♦

PSCMD −− set to the ps command that will provide the PID in the first field and
the program name in the second field. If this is not set properly, the bacula stop
script will most likely not be able to stop Bacula in all cases.

♦

hostname −− command to return the base host name (non−qualified) of your
system. This is generally the machine name. Not too important as the user can
correct this in his configuration file.

♦

•

Bacula Storage Management System

Bacula Porting Notes 347

CFLAGS −− set any special compiler flags needed. Many systems need a special
flag to make pthreads work. See cygwin for an example.

♦

LDFLAGS −− set any special loader flags. See cygwin for an example.♦
PTHREAD_LIB −− set for any special pthreads flags needed during linking. See
freebsd as an example.

♦

lld −− set so that a "long long int" will be properly edited in a printf() call.♦
llu −− set so that a "long long unsigned" will be properly edited in a printf() call.♦
PFILES −− set to add any files that you may define is your platform
subdirectory. These files are used for installation of automatic system startup of
Bacula daemons.

♦

To rebuild a new version of configure from a changed autoconf/configure.in you enter
make configure in the top level Bacula source directory. You must have done a
./configure prior to trying to rebuild the configure script or it will get into an infinite
loop.

•

After you have a working configure script, you may need to make a few system
dependent changes to the way Bacula works. Generally, these are done in
src/baconfig.h. You can find a few examples of system dependent changes toward the
end of this file. For example, on Irix systems, there is no definition for socklen_t, so it is
made in this file. If your system has structure alignment requirements, check the
definition of BALIGN in this file. Currently, all Bacula memory is aligned on a double
boundary.

•

If you are having problems with Bacula's type definitions, you might look at
src/bc_types.h where all the types such as uint32_t, uint64_t, etc. that Bacula uses are
defined.

•

Bacula Developer Notes Index Bacula Regression Testing

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Porting Bacula Index Implementing a GUI

Bacula Storage Management System

Bacula Porting Notes 348

http://www.bacula.org/

Bacula Regression Testing

General

This document is intended mostly for developers who wish to ensure that their changes to Bacula
don't introduce bugs in the base code.

You can find the existing regression script in the Bacula CVS on the SourceForge CVS in the
project tree named regress.

There are two different aspects of regression testing that this document will discuss: 1. Running
the Regression Script, 2. Writing a Regression test.

Running the Regression Script

There are a number of different tests that may be run, such as: the standard set that uses disk
Volumes and runs under any userid; a small set of tests that write to tape; another set of tests
where you must be root to run them. To date, each subset of tests runs no more than about 15
minutes.

Setting the Configuration Parameters

Once you have the regression directory loaded, you will first need to change the variables that
are at the top of regress/Makefile:

#
Makefile for Bacula regression testing
#

Where to get the source to be tested
BACULA_SOURCE="${HOME}/bacula/k"

Where to send email !!!! Change me !!!!!!!
EMAIL=your−email@domain.com

Full path where to find sqlite
DEPKGS="${HOME}/bacula/depkgs/sqlite"

TAPE_DRIVE="/dev/nst0"

if you don't have an autochanger set AUTOCHANGER to /dev/null
AUTOCHANGER="/dev/sg0"

AUTOCHANGER_PATH="/bin/mtx"

BACULA_SOURCE should be the full path to the Bacula source code that you wish to
test.

•

EMAIL should be your email addres. Please remember to change this or I will get a
flood of unwanted messages. You may or may not want to see these emails. In my case, I
don't need them so I direct it to the bit bucket.

•

DEPKGS should be the full path to the sqlite package, must be build before running a•

Bacula Regression Testing 349

Bacula regression. SQLite is used for all regression testing of Bacula. Perhaps at some
future time the tests will include MySQL.
TAPE_DRIVE is the full path to your tape drive. The base set of regression tests do not
use a tape, so this is only important if you want to run the full tests.

•

AUTOCHANGER is the name of your autochanger device. Set this to /dev/null if you
do not have one.

•

AUTOCHANGER_PATH is the full path including the program name for your
autochanger program (normally mtx. Leave the default value if you do not have one.

•

Building the Test Bacula

Once the above variables are set, you can build Bacula by entering:

make setup

This will make a copy of the source code withing the regression tree (in directory regress/build),
configure it, and build it. There should be no errors. If there are, please correct them before
continuing.

Running the Disk Only Regression

Once Bacula is built, you can run the basic disk only non−root regression test by entering:

make test

This will run the base set of tests using disk Volumes, currently (25 Sep 2003), there are current
18 separate tests that run. If you are testing on a non−Linux machine two of the tests will not be
run. In any case, as we add new tests, the number will vary. It will take about 5 or 10 minutes if
you have a fast (2 GHz) machine, and you don't need to be root to run these tests (I run under my
regular userid). The result should be something similar to:

Test results

 ===== Backup Bacula Test OK =====
 ===== Verify Volume Test OK =====
 ===== sparse−test OK =====
 ===== compressed−test OK =====
 ===== sparse−compressed−test OK =====
 ===== Weird files test OK =====
 ===== two−jobs−test OK =====
 ===== two−vol−test OK =====
 ===== six−vol−test OK =====
 ===== bscan−test OK =====
 ===== Weird files2 test OK =====
 ===== concurrent−jobs−test OK =====
 ===== four−concurrent−jobs−test OK =====
 ===== bsr−opt−test OK =====
 ===== bextract−test OK =====
 ===== recycle−test OK =====
 ===== span−vol−test OK =====
 ===== restore−by−file−test OK =====

Each separate test is self contained in that it initializes to run Bacula from scratch (i.e. newly
created database). It will also kill any Bacula session that is currently running. In addition, it uses

Bacula Storage Management System

Building the Test Bacula 350

ports 8101, 8102, and 8103 so that it does not intefere with a production system.

Other Tests

There are a number of other tests that can be run as well. All the tests are a simply shell script
keep in the regress directory. For example the "make test" simply executes ./all−non−root−tests.
The other tests are:

all_non−root−tests
All non−tape tests not requiring root. This is the standard set of tests, that in general,
backup some data, then restore it, and finally compares the restored data with the original
data.

all−root−tests
All non−tape tests requiring root permission. These are a relatively small number of tests
that require running as root. The amount of data backed up can be quite large. For
example, one test backs up /usr, another backs up /etc. One or more of these tests reports
an error −− I'll fix it one day.

all−non−root−tape−tests
All tape test not requiring root. There are currently three tests, all run without being root,
and backup to a tape. The first two tests use one volume, and the third test requires an
autochanger, and uses two volumes. If you don't have an autochanger, then this script
will probably produce an error.

all−tape−and−file−tests
All tape and file tests not requiring root. This includes just about everything, and I don't
run it very often.

If a Test Fails

If you one or more tests fail, the line output will be similar to:

 !!!!! concurrent−jobs−test failed!!! !!!!!

If you want to determine why the test failed, you will need to modify the script so that it prints.
Do so by finding the file in regress/tests that corresponds to the name printed. For example, the
script for the above error message is in: regress/tests/concurrent−jobs−test.

In order to see the output produced by Bacula, you need only change the lines that start with
@output to @tee, then rerun the test by hand. it is very important to start the test from the
regress directory.

To modify the test mentioned above so that you can see the output, modify the following:

...
bin/console −c bin/console.conf <<END_OF_DATA
@output /dev/null
messages
@output tmp/log1.out
label storage=File volume=TestVolume001
run job=CompressedTest level=Full yes
run job=CompressedTest level=Full yes
run job=CompressedTest level=Full yes
run job=CompressedTest level=Full yes

Bacula Storage Management System

Other Tests 351

wait
messages
@#
@# now do a restore
@#
@tee tmp/log2.out
restore where=${cwd}/tmp/bacula−restores
5

to be:

bin/console −c bin/console.conf <<END_OF_DATA
@output /dev/null
messages
@tee tmp/log1.out
label storage=File volume=TestVolume001
run job=CompressedTest level=Full yes
run job=CompressedTest level=Full yes
run job=CompressedTest level=Full yes
run job=CompressedTest level=Full yes
wait
messages
@#
@# now do a restore
@#
@output tmp/log2.out
restore where=${cwd}/tmp/bacula−restores
5

this will ensure that the output is written both to file (tmp/log1.out and tmp/log2.out) as well as
to your terminal.

In rare cases, you may want to see debug output that is generated by the Director or one of the
other daemons. To do so modify: bin/bacula start 2>1 >/dev/null to

bin/bacula start

Writing a Regression Test

Any developer, who implements a major new feature, should write a regression test that
exercises and validates the new feature. Each regression test is a complete test by itself. It
terminates any running Bacula, initializes the database, starts Bacula, then runs the test by using
the console program.

Running the Tests by Hand

You can run any individual test by hand by cd'ing to the regress directory and entering:

tests/<test−name>

Directory Structure

The directory structure of the regression tests is:

 regress − Makefile, scripts to start tests

Bacula Storage Management System

Writing a Regression Test 352

 |−−−−−− scripts − Scripts and conf files
 |−−−−−−−tests − All test scripts are here
 |
 |−−−−−−−−−−−−−−−−−−−−−−−− All directories below this are used
 | for testing, but are created from the
 | above directories and are removed with
 | "make distclean"
 |−−−−−− bin − This is the install directory for
 | Bacula to be used testing
 |−−−−−− build − Where the Bacula source build tree is
 |−−−−−− tmp − Most temp files go here
 |−−−−−− working − Bacula working directory
 |−−−−−− weird−files − Weird files used in two of the tests.

Adding a New Test

If you want to write a new regression test, it is best to start with one of the existing test scripts,
and modify it to do the new test.

When adding a new test, be extremely careful about adding anything to any of the daemons'
configuration files. The reason is that it may change the prompts that are sent to the console. For
example, adding a Pool means that the current scripts, which assume that Bacula automatically
selects a Pool, will now be presented with a new prompt, so the test will fail. If you need to
enhance the configuration files, consider making your own versions.

Porting Bacula Index Implementing a GUI

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Bacula Regression Testing Index Bacula Daemon Protocol

Bacula Storage Management System

Adding a New Test 353

http://www.bacula.org/

Implementing a Bacula GUI Interface

General

This document is intended mostly for developers who wish to develop a new GUI interface to
Bacula.

Minimal Code in Console Program

Until now, I have kept all the Catalog code in the Directory (with the exception of dbcheck and
bscan). This is because at some point I would like to add user level security and access. If we
have code spread everywhere such as in a GUI this will be more difficult. The other advantage is
that any code you add to the Director is automatically available to both the tty console program
and the GNOME program. The major disadvantage is it increases the size of the code −−
however, compared to Networker the Bacula Director is really tiny.

GUI Interface is Difficult

Interfacing to a interactive program such as Bacula can be very difficult because the interfacing
program must interpret all the prompts that may come. This can be next to impossible. There are
are a number of ways that Bacula is designed to facilitate this:

The Bacula network protocol is packet based, and thus piece of information sent can be
ASCII or binary.

•

The packet interface permits knowing where the end of a list is.•
The packet interface permits special "signals" to be passed rather than data.•
The Director has a number of commands that are non−interactive. They all begin with a
period, and provide things such as the list of all Jobs, list of all Clients, list of all Pools,
list of all Storage, ... Thus the GUI interface can get to virtually all information that the
Director has in a deterministic way. See <bacula−source>/src/dird/ua_dotcmds.c for
more details on this.

•

Most console commands all all the arguments to be specified on the command line: e.g.
run job=NightlyBackup level=Full

•

On of the first things to overcome is to be able to establish a conversation with the Director.
Although you can write all your own code, it is probably easier to use the Bacula subroutines.
The following code is used by the Console program to begin a conversation.

#include "bacula.h"
static BSOCK *UA_sock = NULL;
static JCR *jcr;
...
 read−your−config−getting−address−and−pasword;

 UA_sock = bnet_connect(NULL, 5, 15, "Director daemon", dir−>address,
 NULL, dir−>DIRport, 0);
 if (UA_sock == NULL) {
 terminate_console(0);
 return 1;
 }
 jcr.dir_bsock = UA_sock;

Implementing a Bacula GUI Interface 354

 if (!authenticate_director(dir)) {
 fprintf(stderr, "ERR=%s", UA_sock−>msg);
 terminate_console(0);
 return 1;
 }
 read_and_process_input(stdin, UA_sock);
 if (UA_sock) {
 bnet_sig(UA_sock, BNET_TERMINATE); /* send EOF */
 bnet_close(UA_sock);
 }
 exit 0;

Then the read_and)process_input routine looks like the following:

 get−input−to−send−to−the−Director;
 bnet_fsend(UA_sock, "%s", input);
 stat = bnet_recv(UA_sock);
 process−output−from−the−Director;

For a GUI program things will be a bit more complicated. Basically in the very inner loop, you
will need to check and see if any output is available on the UA_sock. For an example, please take
a look at the GNOME GUI interface code in: <bacula−sourcesole/console.c

Bacula Regression Testing Index Bacula Daemon Protocol

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Porting Notes Index Storage Media Output Format

Bacula Storage Management System

Implementing a Bacula GUI Interface 355

http://www.bacula.org/

Daemon Protocol

General

This document describes the protocols used between the various daemons. As Bacula has
developed, it has become quite out of date. The general idea still holds true, but the details of the
fields for each command, and indeed the commands themselves have changed considerably.

It is intended to be a technical discussion of the general daemon protocols and as such is not
targeted at end users but rather at developers and system administrators that want or need to
know more of the working details of Bacula.

Low Level Network Protocol

At the lowest level, the network protocol is handled by BSOCK packets which contain a lot of
information about the status of the network connection: who is at the other end, etc. Each basic
Bacula network read or write actually consists of two low level network read/writes. The first
write always sends four bytes of data in machine independent byte order. If data is to follow, the
first four bytes are a positive non−zero integer indicating the length of the data that follow in the
subsequent write. If the four byte integer is zero or negative, it indicates a special request, a sort
of network signaling capability. In this case, no data packet will follow. The low level BSOCK
routines expect that only a single thread is accessing the socket at a time. It is advised that
multiple threads do not read/write the same socket. If you must do this, you must provide some
sort of locking mechanism. I would not be appropriate for efficiency reasons to make every call
to the BSOCK routines lock and unlock the packet.

General Daemon Protocol

In general, all the daemons follow the following global rules. There may be exceptions
depending on the specific case. Normally, one daemon will be sending commands to another
daemon (specifically, the Director to the Storage daemon and the Director to the File daemon).

Commands are always ASCII commands that are upper/lower case dependent as well as
space sensitive.

•

All binary data is converted into ASCII (either with printf statements or using base64
encoding).

•

All responses to commands sent are always prefixed with a return numeric code where
codes in the 1000's are reserved for the Director, the 2000's are reserved for the File
daemon, and the 3000's are reserved for the Storage daemon.

•

Any response that is not prefixed with a numeric code is a command (or subcommand if
you like) coming from the other end. For example, while the Director is corresponding
with the Storage daemon, the Storage daemon can request Catalog services from the
Director. This convention permits each side to send commands to the other daemon
while simultaneously responding to commands.

•

Any response that is of zero length, depending on the context, either terminates the data
stream being sent or terminates command mode prior to closing the connection.

•

Any response that is of negative length is a special sign that normally requires a
response. For example, during data transfer from the File daemon to the Storage daemon,
normally the File daemon sends continuously without intervening reads. However,

•

Daemon Protocol 356

periodically, the File daemon will send a packet of length −1 indicating that the current
data stream is complete and that the Storage daemon should respond to the packet with
an OK, ABORT JOB, PAUSE, etc. This permits the File daemon to efficiently send data
while at the same time occasionally "polling" the Storage daemon for his status or any
special requests.

Currently, these negative lengths are specific to the daemon, but shortly, the range 0 to −999 will
be standard daemon wide signals, while −1000 to −1999 will be for Director user, −2000 to
−2999 for the File daemon, and −3000 to −3999 for the Storage daemon.

The Protocol Used Between the Director and the Storage
Daemon

Before sending commands to the File daemon, the Director opens a Message channel with the
Storage daemon, identifies itself and presents its password. If the password check is OK, the
Storage daemon accepts the Director. The Director then passes the Storage daemon, the JobId to
be run as well as the File daemon authorization (append, read all, or read for a specific session).
The Storage daemon will then pass back to the Director a enabling key for this JobId that must be
presented by the File daemon when opening the job. Until this process is complete, the Storage
daemon is not available for use by File daemons.

SD: listens
DR: makes connection
DR: Hello <Director−name> calling <password>
SD: 3000 OK Hello
DR: JobId=nnn Allow=(append, read) Session=(*, SessionId)
 (Session not implemented yet)
SD: 3000 OK Job Authorization=<password>
DR: use device=<device−name> media_type=<media−type> pool_name=<pool−name> pool_type=<pool_type>
SD: 3000 OK use device

For the Director to be authorized, the <Director−name> and the <password> must match the
values in one of the Storage daemon's Director resources (there may be several Directors that can
access a single Storage daemon).

The Protocol Used Between the Director and the File
Daemon

A typical conversation might look like the following:

FD: listens
DR: makes connection
DR: Hello <Director−name> calling <password>
FD: 2000 OK Hello
DR: JobId=nnn Authorization=<password>
FD: 2000 OK Job
DR: storage address = <Storage daemon address> port = <port−number>
 name = <DeviceName> mediatype = <MediaType>
FD: 2000 OK storage
DR: include
DR: <directory1>
DR: <directory2>
 ...

Bacula Storage Management System

The Protocol Used Between the Director and the Storage Daemon 357

DR: Null packet
FD: 2000 OK include
DR: exclude
DR: <directory1>
DR: <directory2>
 ...
DR: Null packet
FD: 2000 OK exclude
DR: full
FD: 2000 OK full
DR: save
FD: 2000 OK save
FD: Attribute record for each file as sent to the
 Storage daemon (described above).
FD: Null packet
FD: <append close responses from Storage daemon>
 e.g.
 3000 OK Volumes = <number of volumes>
 3001 Volume = <volume−id> <start file> <start block>
 <end file> <end block> <volume session−id>
 3002 Volume data = <date/time of last write> <Number bytes written>
 <number errors>
 ... additional Volume / Volume data pairs for volumes 2 .. n
FD: Null packet

FD: close socket

The Save Protocol Between the File Daemon and the
Storage Daemon

Once the Storage daemon has issued the save command, the File daemon will contact the Storage
daemon to begin the save.

In what follows: FD: refers to information set via the network from the File daemon to the
Storage daemon, and SD: refers to information set from the Storage daemon to the File daemon.

Command and Control Information

Command and control information is exchanged in human readable ASCII commands.

FD: listens
SD: makes connection
FD: append open session = <JobId> [<password>]
SD: 3000 OK ticket = <number>
FD: append data <ticket−number>
SD: 3000 OK data address = <IPaddress> port = <port>

Data Information

The Data information consists of the file attributes and data to the Storage daemon. For the most
part, the data information is sent one way: from the File daemon to the Storage daemon. This
allows the File daemon to transfer information as fast as possible without a lot of handshaking
and network overhead.

Bacula Storage Management System

The Save Protocol Between the File Daemon and the Storage Daemon 358

However, from time to time, the File daemon needs to do a sort of checkpoint of the situation to
ensure that everything is going well with the Storage daemon. To do so, the File daemon sends a
packet with a negative length indicating that he wishes the Storage daemon to respond by
sending a packet of information to the File daemon. The File daemon then waits to receive a
packet from the Storage daemon before continuing.

All data sent are in binary format except for the header packet, which is in ASCII. There are two
packet types used data transfer mode: a header packet, the contents of which are known to the
Storage daemon, and a data packet, the contents of which are never examined by the Storage
daemon.

The first data packet to the Storage daemon will be an ASCII header packet consisting of the
following data.

<File−Index> <Stream−Id> <Info>

where <File−Index> is a sequential number beginning from one that increments with each file
(or directory) sent.

where <Stream−Id> will be 1 for the Attributes record and 2 for uncompressed File data. 3 is
reserved for the MD5 signature for the file.

where <Info> transmit information about the Stream to the Storage Daemon. It is a character
string field where each character has a meaning. The only character currently defined is 0 (zero),
which is simply a place holder (a no op). In the future, there will be codes indicating compressed
data, encrypted data, etc.

Immediately following the header packet, the Storage daemon will expect any number of data
packets. The series of data packets is terminated by a zero length packet, which indicates to the
Storage daemon that the next packet will be another header packet. As previously mentioned, a
negative length packet is a request for the Storage daemon to temporarily enter command mode
and send a reply to the File daemon. Thus an actual conversation might contain the following
exchanges:

FD: <1 1 0> (header packet)
FD: <data packet containing file−attributes>
FD: Null packet
FD: <1 2 0>
FD: <multiple data packets containing the file data>
FD: Packet length = −1
SD: 3000 OK
FD: <2 1 0>
FD: <data packet containing file−attributes>
FD: Null packet
FD: <2 2 0>
FD: <multiple data packets containing the file data>
FD: Null packet
FD: Null packet

FD: append end session <ticket−number>
SD: 3000 OK end
FD: append close session <ticket−number>
SD: 3000 OK Volumes = <number of volumes>

Bacula Storage Management System

The Save Protocol Between the File Daemon and the Storage Daemon 359

SD: 3001 Volume = <volumeid> <start file> <start block>
 <end file> <end block> <volume session−id>
SD: 3002 Volume data = <date/time of last write> <Number bytes written>
 <number errors>
SD: ... additional Volume / Volume data pairs for
 volumes 2 .. n
FD: close socket

The information returned to the File daemon by the Storage daemon in response to the append
close session is transmit in turn to the Director.

Porting Notes Index Storage Media Output Format

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Bacula Daemon Protocol Index Bacula Memory Management

Bacula Storage Management System

The Save Protocol Between the File Daemon and the Storage Daemon 360

http://www.bacula.org/

Storage Media Output Format

General

This document describes the media format written by the Storage daemon. The Storage daemon
reads and writes in units of blocks. Blocks contain records. Each block has a block header
followed by records, and each record has a record header followed by record data.

This chapter is intended to be a technical discussion of the Media Format and as such is not
targeted at end users but rather at developers and system administrators that want or need to
know more of the working details of Bacula.

Definitions

Block
A block represents the primitive unit of information that the Storage daemon reads and
writes to a physical device. Normally, for a tape device, it will be the same as a tape
block. The Storage daemon always reads and writes blocks. A block consists of block
header information followed by records. Clients of the Storage daemon (the File
daemon) normally never see blocks. However, some of the Storage tools (bls, bscan,
bextract, ...) may be use block header information. In older Bacula tape versions, a block
could contain records from multiple job. However, all blocks currently written by Bacula
are block level BB02, and these blocks contain records for only a single job. This
permitted moving the VolumeSessionId and VolumeSessionTime (see below) from each
record heading to the Block header. This has two advantages: 1. a block can be quickly
rejected based on the contents of the header without reading all the records. 2. because
there is on the average more than one record per block, less data is written to the Volume
for each job.

Record
A record consists of a Record Header, which is managed by the Storage daemon and
Record Data, which is the data received from the Client. A record is the primitive unit of
information sent to and from the Storage daemon by the Client (File daemon) programs.
The details are described below.

JobId
A number assigned by the Director daemon for a particular job. This number will be
unique for that particular Director (Catalog). The daemons use this number to keep track
of individual jobs. Within the Storage daemon, the JobId may not be unique if several
Directors are accessing the Storage daemon simultaneously.

Session
A Session is a concept used in the Storage daemon corresponds one to one to a Job with
the exception that each session is uniquely identified within the Storage daemon by a
unique SessionId/SessionTime pair (see below).

VolSessionId
A unique number assigned by the Storage daemon to a particular session (Job) it is
having with a File daemon. This number by itself is not unique to the given Volume, but
with the VolSessionTime, it is unique.

VolSessionTime
A unique number assigned by the Storage daemon to a particular Storage daemon
execution. It is actually the Unix time_t value of when the Storage daemon began

Storage Media Output Format 361

execution cast to a 32 bit unsigned integer. The combination of the VolSessionId and the
VolSessionTime for a given Storage daemon is guaranteed to be unique for each Job (or
session).

FileIndex
A sequential number beginning at one assigned by the File daemon to the files within a
job that are sent to the Storage daemon for backup. The Storage daemon ensures that this
number is greater than zero and sequential. Note, the Storage daemon uses negative
FileIndexes to flag Session Start and End Labels as well as End of Volume Labels. Thus,
the combination of VolSessionId, VolSessionTime, and FileIndex uniquely identifies the
records for a single file written to a Volume.

Stream
While writing the information for any particular file to the Volume, there can be any
number of distinct pieces of information about that file, e.g. the attributes, the file data,
... The Stream indicates what piece of data it is, and it is an arbitrary number assigned by
the File daemon to the parts (Unix attributes, Win32 attributes, data, compressed
data, ...) of a file that are sent to the Storage daemon. The Storage daemon has no
knowledge of the details of a Stream; it simply represents a numbered stream of bytes.
The data for a given stream may be passed to the Storage daemon in single record, or in
multiple records.

Block Header
A block header consists of a block identification ("BB02"), a block length in bytes
(typically 64,512) a checksum, and sequential block number. Each block starts with a
Block Header and is followed by Records. Current block headers also contain the
VolSessionId and VolSessionTime for the records written to that block.

Record Header
A record header contains the Volume Session Id, the Volume Session Time, the
FileIndex, the Stream, and the size of the data record which follows. The Record Header
is always immediately followed by a Data Record if the size given in the Header is
greater than zero. Note, for Block headers of level BB02 (version 1.27 and later), the
Record header as written to tape does not contain the Volume Session Id and the Volume
Session Time as these two fields are stored in the BB02 Block header. The in−memory
record header does have those fields for convenience.

Data Record
A data record consists of a binary stream of bytes and is always preceded by a Record
Header. The details of the meaning of the binary stream of bytes are unknown to the
Storage daemon, but the Client programs (File daemon) defines and thus knows the
details of each record type.

Volume Label
A label placed by the Storage daemon at the beginning of each storage volume. It
contains general information about the volume. It is written in Record format. The
Storage daemon manages Volume Labels, and if the client wants, he may also read them.

Begin Session Label
The Begin Session Label is a special record placed by the Storage daemon on the storage
medium as the first record of an append session job with a File daemon. This record is
useful for finding the beginning of a particular session (Job), since no records with the
same VolSessionId and VolSessionTime will precede this record. This record is not
normally visible outside of the Storage daemon. The Begin Session Label is similar to
the Volume Label except that it contains additional information pertaining to the
Session.

End Session Label

Bacula Storage Management System

Storage Media Output Format 362

The End Session Label is a special record placed by the Storage daemon on the storage
medium as the last record of an append session job with a File daemon. The End Session
Record is distinguished by a FileIndex with a value of minus two (−2). This record is
useful for detecting the end of a particular session since no records with the same
VolSessionId and VolSessionTime will follow this record. This record is not normally
visible outside of the Storage daemon. The End Session Label is similar to the Volume
Label except that it contains additional information pertaining to the Session.

Storage Daemon File Output Format

The file storage and tape storage formats are identical except that tape records are by default
blocked into blocks of 64,512 bytes, except for the last block, which is the actual number of
bytes written rounded up to a multiple of 1024 whereas the last record of file storage is not
rounded up. The default block size of 64,512 bytes may be overridden by the user (some older
tape drives only support block sizes of 32K). Each Session written to tape is terminated with an
End of File mark (this will be removed later). Sessions written to file are simply appended to the
end of the file.

Overall Format

A Bacula output file consists of Blocks of data. Each block contains a block header followed by
records. Each record consists of a record header followed by the record data. The first record on
a tape will always be the Volume Label Record.

No Record Header will be split across Bacula blocks. However, Record Data may be split across
any number of Bacula blocks. Obviously this will not be the case for the Volume Label which
will always be smaller than the Bacula Block size.

To simplify reading tapes, the Start of Session (SOS) and End of Session (EOS) records are
never split across blocks. If this is about to happen, Bacula will write a short block before writing
the session record (actually, the SOS record should always be the first record in a block,
excepting perhaps the Volume label).

Due to hardware limitations, the last block written to the tape may not be fully written. If your
drive permits backspace record, Bacula will backup over the last record written on the tape,
re−read it and verify that it was correctly written.

When a new tape is mounted Bacula will write the full contents of the partially written block to
the new tape ensuring that there is no loss of data. When reading a tape, Bacula will discard any
block that is not totally written, thus ensuring that there is no duplication of data. In addition,
since Bacula blocks are sequentially numbered within a Job, it is easy to ensure that no block is
missing or duplicated.

Serialization

All Block Headers, Record Headers, and Label Records are written using Bacula's serialization
routines. These routines guarantee that the data is written to the output volume in a machine
independent format.

Bacula Storage Management System

Storage Daemon File Output Format 363

Block Header

The format of the Block Header (version 1.27 and later) is:

 uint32_t CheckSum; /* Block check sum */
 uint32_t BlockSize; /* Block byte size including the header */
 uint32_t BlockNumber; /* Block number */
 char ID[4] = "BB02"; /* Identification and block level */
 uint32_t VolSessionId; /* Session Id for Job */
 uint32_t VolSessionTime; /* Session Time for Job */

The Block header is a fixed length and fixed format and is followed by Record Headers and
Record Data. The CheckSum field is a 32 bit checksum of the block data and the block header
but not including the CheckSum field. The Block Header is always immediately followed by a
Record Header. If the tape is damaged, a Bacula utility will be able to recover as much
information as possible from the tape by recovering blocks which are valid. The Block header is
written using the Bacula serialization routines and thus is guaranteed to be in machine
independent format. See below for version 2 of the block header.

Record Header

Each binary data record is preceded by a Record Header. The Record Header is fixed length and
fixed format, whereas the binary data record is of variable length. The Record Header is written
using the Bacula serialization routines and thus is guaranteed to be in machine independent
format.

The format of the Record Header (version 1.27 or later) is:

 int32_t FileIndex; /* File index supplied by File daemon */
 int32_t Stream; /* Stream number supplied by File daemon */
 uint32_t DataSize; /* size of following data record in bytes */

This record is followed by the binary Stream data of DataSize bytes, followed by another Record
Header record and the binary stream data. For the definitive definition of this record, see record.h
in the src/stored directory.

Additional notes on the above:

The VolSessionId
is a unique sequential number that is assigned by the Storage Daemon to a particular Job.
This number is sequential since the start of execution of the daemon.

The VolSessionTime
is the time/date that the current execution of the Storage Daemon started. It assures that
the combination of VolSessionId and VolSessionTime is unique for every jobs written to
the tape, even if there was a machine crash between two writes.

The FileIndex
is a sequential file number within a job. The Storage daemon requires this index to be
greater than zero and sequential. Note, however, that the File daemon may send multiple
Streams for the same FileIndex. In addition, the Storage daemon uses negative
FileIndices to hold the Begin Session Label, the End Session Label, and the End of
Volume Label.

Bacula Storage Management System

Block Header 364

The Stream
is defined by the File daemon and is used to identify separate parts of the data saved for
each file (Unix attributes, Win32 attributes, file data, compressed file data, sparse file
data, ...). The Storage Daemon has no idea of what a Stream is or what it contains except
that the Stream is required to be a positive integer. Negative Stream numbers are used
internally by the Storage daemon to indicate that the record is a continuation of the
previous record (the previous record would not entirely fit in the block).
For Start Session and End Session Labels (where the FileIndex is negative), the Storage
daemon uses the Stream field to contain the JobId. The current stream definitions are:

STREAM_UNIX_ATTRIBUTES 1 /* Generic Unix attributes */
STREAM_FILE_DATA 2 /* Standard uncompressed data */
STREAM_MD5_SIGNATURE 3 /* MD5 signature for the file */
STREAM_GZIP_DATA 4 /* GZip compressed file data */
STREAM_WIN32_ATTRIBUTES 5 /* Windows attributes (superset of Unix) */
STREAM_SPARSE_DATA 6 /* Sparse data stream */
STREAM_SPARSE_GZIP_DATA 7 /* Sparse data stream compressed by GZIP */
STREAM_PROGRAM_NAMES 8 /* program names for program data */
STREAM_PROGRAM_DATA 9 /* Data needing program */
STREAM_SHA1_SIGNATURE 10 /* SHA1 signature for the file */
STREAM_WIN32_DATA 11 /* Win32 BackupRead data */
STREAM_WIN32_GZIP_DATA 12 /* Gzipped Win32 BackupRead data */

The DataSize
is the size in bytes of the binary data record that follows the Session Record header. The
Storage Daemon has no idea of the actual contents of the binary data record. For
standard Unix files, the data record typically contains the file attributes or the file data.
For a sparse file the first 64 bits of the file data contains the storage address for the data
block.

The Record Header is never split across two blocks. If there is not enough room in a block for the
full Record Header, the block is padded to the end with zeros and the Record Header begins in
the next block. The data record, on the other hand, may be split across multiple blocks and even
multiple physical volumes. When a data record is split, the second (and possibly subsequent)
piece of the data is preceded by a new Record Header. Thus each piece of data is always
immediately preceded by a Record Header. When reading a record, if Bacula finds only part of
the data in the first record, it will automatically read the next record and concatenate the data
record to form a full data record.

Records no longer used:

The format of the Block Header (version 1.26 and earlier) is:

 uint32_t CheckSum; /* Block check sum */
 uint32_t BlockSize; /* Block byte size including the header */
 uint32_t BlockNumber; /* Block number */
 char ID[4] = "BB01"; /* Identification and block level */

The format of the Record Header (version 1.26 or earlier) is:

 uint32_t VolSessionId; /* Unique ID for this session */
 uint32_t VolSessionTime; /* Start time/date of session */
 int32_t FileIndex; /* File index supplied by File daemon */

Bacula Storage Management System

Block Header 365

 int32_t Stream; /* Stream number supplied by File daemon */
 uint32_t DataSize; /* size of following data record in bytes */

Version BB02 Block Header

The original block header BB01 was designed to hold records from multiple sessions. However,
it is simpler (and probably more efficient) for each session (Job) to have its own private block.
As a consequence, the SessionId and SessionTime can be written once in each Block Header and
not in the Record Header. So, the second and current version of the Block Header is:

 uint32_t CheckSum; /* Block check sum */
 uint32_t BlockSize; /* Block byte size including the header */
 uint32_t BlockNumber; /* Block number */
 char ID[4] = "BB02"; /* Identification and block level */
 uint32_t VolSessionId; /* Applies to all records */
 uint32_t VolSessionTime; /* contained in this block */

As with the previous version, the BB02 Block header is a fixed length and fixed format and is
followed by Record Headers and Record Data. The CheckSum field is a 32 bit CRC checksum of
the block data and the block header but not including the CheckSum field. The Block Header is
always immediately followed by a Record Header. If the tape is damaged, a Bacula utility will be
able to recover as much information as possible from the tape by recovering blocks which are
valid. The Block header is written using the Bacula serialization routines and thus is guaranteed
to be in machine independent format.

Version 2 Record Header

Version 2 Record Header is written to the medium when using Version BB02 Block Headers.
The memory representation of the record is identical to the old BB01 Record Header, but on the
storage medium, the first two fields, namely VolSessionId and VolSessionTime are not written.
The Block Header is filled with these values when the First user record is written (i.e. non label
record) so that when the block is written, it will have the current and unique VolSessionId and
VolSessionTime. On reading each record from the Block, the VolSessionId and VolSessionTime
is filled in the Record Header from the Block Header.

Volume Label Format

Tape volume labels are created by the Storage daemon in response to a label command given to
the Console program, or alternatively by the btape program. created. Each volume is labeled
with the following information using the Bacula serialization routines, which guarantee machine
byte order independence.

For Bacula versions 1.27 and later, the Volume Label Format is:

 char Id[32]; /* Bacula 1.0 Immortal\n */
 uint32_t VerNum; /* Label version number */

 /* VerNum 11 and greater Bacula 1.27 and later */
 btime_t label_btime; /* Time/date tape labeled */
 btime_t write_btime; /* Time/date tape first written */

 /* The following are 0 in VerNum 11 and greater */

Bacula Storage Management System

Version BB02 Block Header 366

 float64_t write_date; /* Date this label written */
 float64_t write_time; /* Time this label written */

 char VolName[128]; /* Volume name */
 char PrevVolName[128]; /* Previous Volume Name */
 char PoolName[128]; /* Pool name */
 char PoolType[128]; /* Pool type */
 char MediaType[128]; /* Type of this media */

 char HostName[128]; /* Host name of writing computer */
 char LabelProg[32]; /* Label program name */
 char ProgVersion[32]; /* Program version */
 char ProgDate[32]; /* Program build date/time */

The following is no longer used, but Bacula can still read it. For Bacula versions 1.26 and earlier,
the Volume Label is:

 char Id[32]; /* Bacula 0.9 mortal\n */
 uint32_t VerNum; /* Label version number */

 float64_t label_date; /* Date tape labeled */
 float64_t label_time; /* Time tape labeled */

 float64_t write_date; /* Date this label written */
 float64_t write_time; /* Time this label written */

 char VolName[128]; /* Volume name */
 char PrevVolName[128]; /* Previous Volume Name */
 char PoolName[128]; /* Pool name */
 char PoolType[128]; /* Pool type */
 char MediaType[128]; /* Type of this media */

 char HostName[128]; /* Host name of writing computer */
 char LabelProg[32]; /* Label program name */
 char ProgVersion[32]; /* Program version */
 char ProgDate[32]; /* Program build date/time */

Note, the LabelType (Volume Label, Volume PreLabel, Session Start Label, ...) is stored in the
record FileIndex field of the Record Header and does not appear in the data part of the record.

Session Label

The Session Label is written at the beginning and end of each session as well as the last record
on the physical medium. It has the following binary format:

 char Id[32]; /* Bacula Immortal ... */
 uint32_t VerNum; /* Label version number */

 uint32_t JobId; /* Job id */
 uint32_t VolumeIndex; /* sequence no of vol */

 /* Prior to VerNum 11 */
 float64_t write_date; /* Date this label written */

 /* VerNum 11 and greater */
 btime_t write_btime; /* time/date record written */

 /* The following is zero VerNum 11 and greater */

Bacula Storage Management System

Session Label 367

 float64_t write_time; /* Time this label written */

 char PoolName[128]; /* Pool name */
 char PoolType[128]; /* Pool type */
 char JobName[128]; /* base Job name */
 char ClientName[128];
 /* Added in VerNum 10 */
 char Job[128]; /* Unique Job name */
 char FileSetName[128]; /* FileSet name */
 uint32_t JobType;
 uint32_t JobLevel;

In addition, the EOS label contains:

 /* The remainder are part of EOS label only */
 uint32_t JobFiles;
 uint64_t JobBytes;
 uint32_t start_block;
 uint32_t end_block;
 uint32_t start_file;
 uint32_t end_file;
 uint32_t JobErrors;

In addition, for VerNum greater than 10, the EOS label contains (in addition to the above):

 uint32_t JobStatus /* Job termination code */

: Note, the LabelType (Volume Label, Volume PreLabel, Session Start Label, ...) is stored in the
record FileIndex field and does not appear in the data part of the record. Also, the Stream field of
the Record Header contains the JobId. This permits quick filtering without actually reading all
the session data in many cases.

Overall Storage Format

 Current Bacula Tape Format
 6 June 2001

 Version BB02 added 28 September 2002
 Version BB01 is the old deprecated format.

 A Bacula tape is composed of tape Blocks. Each block
 has a Block header followed by the block data. Block
 Data consists of Records. Records consist of Record
 Headers followed by Record Data.

 :===:
 | |
 | Block Header (24 bytes) |
 | (16 bytes version BB01) |
 |−−−|
 | |
 | Record Header (12 bytes) |
 | (20 bytes version BB01) |
 |−−−|
 | |
 | Record Data |

Bacula Storage Management System

Overall Storage Format 368

 | |
 |−−−|
 | |
 | Record Header (12 bytes) |
 | (20 bytes version BB01) |
 |−−−|
 | |
 | ... |

 Block Header: the first item in each block. The format is
 shown below.

 Partial Data block: occurs if the data from a previous
 block spills over to this block (the normal case except
 for the first block on a tape). However, this partial
 data block is always preceded by a record header.

 Record Header: identifies the Volume Session, the Stream
 and the following Record Data size. See below for format.

 Record data: arbitrary binary data.

 Block Header Format BB02
 :===:
 | CheckSum (uint32_t) |
 |−−−|
 | BlockSize (uint32_t) |
 |−−−|
 | BlockNumber (uint32_t) |
 |−−−|
 | "BB02" (char [4]) |
 |−−−|
 | VolSessionId (uint32_t) |
 |−−−|
 | VolSessionTime (uint32_t) |
 :===:

 BBO2: Serves to identify the block as a
 Bacula block and also servers as a block format identifier
 should we ever need to change the format.

 Block Header Format BB01 (deprecated)
 :===:
 | CheckSum (uint32_t) |
 |−−−|
 | BlockSize (uint32_t) |
 |−−−|
 | BlockNumber (uint32_t) |
 |−−−|
 | "BB01" (char [4]) |
 :===:

 BBO1: Serves to identify the block as a
 Bacula block and also servers as a block format identifier
 should we ever need to change the format.

 BlockSize: is the size in bytes of the block. When reading
 back a block, if the BlockSize does not agree with the

Bacula Storage Management System

Overall Storage Format 369

 actual size read, Bacula discards the block.

 CheckSum: a checksum for the Block.

 BlockNumber: is the sequential block number on the tape.

 VolSessionId: a unique sequential number that is assigned
 by the Storage Daemon to a particular Job.
 This number is sequential since the start
 of execution of the daemon.

 VolSessionTime: the time/date that the current execution
 of the Storage Daemon started. It assures
 that the combination of VolSessionId and
 VolSessionTime is unique for all jobs
 written to the tape, even if there was a
 machine crash between two writes.

 Record Header Format BB02
 :===:
 | FileIndex (int32_t) |
 |−−−|
 | Stream (int32_t) |
 |−−−|
 | DataSize (uint32_t) |
 :===:

 Record Header Format BB01 (deprecated)
 :===:
 | VolSessionId (uint32_t) |
 |−−−|
 | VolSessionTime (uint32_t) |
 |−−−|
 | FileIndex (int32_t) |
 |−−−|
 | Stream (int32_t) |
 |−−−|
 | DataSize (uint32_t) |
 :===:

 VolSessionId: a unique sequential number that is assigned
 by the Storage Daemon to a particular Job.
 This number is sequential since the start
 of execution of the daemon.

 VolSessionTime: the time/date that the current execution
 of the Storage Daemon started. It assures
 that the combination of VolSessionId and
 VolSessionTime is unique for all jobs
 written to the tape, even if there was a
 machine crash between two writes.

 FileIndex: a sequential file number within a job. The
 Storage daemon enforces this index to be
 greater than zero and sequential. Note,
 however, that the File daemon may send
 multiple Streams for the same FileIndex.
 The Storage Daemon uses negative FileIndices
 to identify Session Start and End labels

Bacula Storage Management System

Overall Storage Format 370

 as well as the End of Volume labels.

 Stream: defined by the File daemon and is intended to be
 used to identify separate parts of the data
 saved for each file (attributes, file data,
 ...). The Storage Daemon has no idea of
 what a Stream is or what it contains.

 DataSize: the size in bytes of the binary data record
 that follows the Session Record header.
 The Storage Daemon has no idea of the
 actual contents of the binary data record.
 For standard Unix files, the data record
 typically contains the file attributes or
 the file data. For a sparse file
 the first 64 bits of the data contains
 the storage address for the data block.

 Volume Label
 :===:
 | Id (32 bytes) |
 |−−−|
 | VerNum (uint32_t) |
 |−−−|
 | label_date (float64_t) |
 | label_btime (btime_t VerNum 11 |
 |−−−|
 | label_time (float64_t) |
 | write_btime (btime_t VerNum 11 |
 |−−−|
 | write_date (float64_t) |
 | 0 (float64_t) VerNum 11 |
 |−−−|
 | write_time (float64_t) |
 | 0 (float64_t) VerNum 11 |
 |−−−|
 | VolName (128 bytes) |
 |−−−|
 | PrevVolName (128 bytes) |
 |−−−|
 | PoolName (128 bytes) |
 |−−−|
 | PoolType (128 bytes) |
 |−−−|
 | MediaType (128 bytes) |
 |−−−|
 | HostName (128 bytes) |
 |−−−|
 | LabelProg (32 bytes) |
 |−−−|
 | ProgVersion (32 bytes) |
 |−−−|
 | ProgDate (32 bytes) |
 |−−−|
 :===:

 Id: 32 byte Bacula identifier "Bacula 1.0 immortal\n"

 (old version also recognized:)
 Id: 32 byte Bacula identifier "Bacula 0.9 mortal\n"

Bacula Storage Management System

Overall Storage Format 371

 LabelType (Saved in the FileIndex of the Header record).
 PRE_LABEL −1 Volume label on unwritten tape
 VOL_LABEL −2 Volume label after tape written
 EOM_LABEL −3 Label at EOM (not currently implemented)
 SOS_LABEL −4 Start of Session label (format given below)
 EOS_LABEL −5 End of Session label (format given below)

 VerNum: 11

 label_date: Julian day tape labeled
 label_time: Julian time tape labeled

 write_date: Julian date tape first used (data written)
 write_time: Julian time tape first used (data written)

 VolName: "Physical" Volume name

 PrevVolName: The VolName of the previous tape (if this tape is
 a continuation of the previous one).

 PoolName: Pool Name

 PoolType: Pool Type

 MediaType: Media Type

 HostName: Name of host that is first writing the tape

 LabelProg: Name of the program that labeled the tape

 ProgVersion: Version of the label program

 ProgDate: Date Label program built

 Session Label
 :===:
 | Id (32 bytes) |
 |−−−|
 | VerNum (uint32_t) |
 |−−−|
 | JobId (uint32_t) |
 |−−−|
 | write_btime (btime_t) VerNum 11 |
 | *write_date (float64_t) VerNum 10 |
 |−−−|
 | 0 (float64_t) VerNum 11 |
 | *write_time (float64_t) VerNum 10 |
 |−−−|
 | PoolName (128 bytes) |
 |−−−|
 | PoolType (128 bytes) |
 |−−−|
 | JobName (128 bytes) |
 |−−−|
 | ClientName (128 bytes) |
 |−−−|
 | Job (128 bytes) |

Bacula Storage Management System

Overall Storage Format 372

 |−−−|
 | FileSetName (128 bytes) |
 |−−−|
 | JobType (uint32_t) |
 |−−−|
 | JobLevel (uint32_t) |
 |−−−|
 | FileSetMD5 (50 bytes) VerNum 11 |
 |−−−|

 Additional fields in End Of Session Label

 |−−−|
 | JobFiles (uint32_t) |
 |−−−|
 | JobBytes (uint32_t) |
 |−−−|
 | start_block (uint32_t) |
 |−−−|
 | end_block (uint32_t) |
 |−−−|
 | start_file (uint32_t) |
 |−−−|
 | end_file (uint32_t) |
 |−−−|
 | JobErrors (uint32_t) |
 |−−−|
 | JobStatus (uint32_t) VerNum 11 |
 :===:

 * => fields deprecated

 Id: 32 byte Bacula Identifier "Bacula 1.0 immortal\n"

 LabelType (in FileIndex field of Header):
 EOM_LABEL −3 Label at EOM
 SOS_LABEL −4 Start of Session label
 EOS_LABEL −5 End of Session label

 VerNum: 11

 JobId: JobId

 write_btime: Bacula time/date this tape record written

 write_date: Julian date tape this record written − deprecated
 write_time: Julian time tape this record written − deprecated.

 PoolName: Pool Name

 PoolType: Pool Type

 MediaType: Media Type

 ClientName: Name of File daemon or Client writing this session
 Not used for EOM_LABEL.

Bacula Storage Management System

Overall Storage Format 373

Unix File Attributes

The Unix File Attributes packet consists of the following:

<File−Index> <Type> <Filename>@<File−Attributes>@<Link> @<Extended−Attributes@>

where

@
represents a byte containing a binary zero.

FileIndex
is the sequential file index starting from one assigned by the File daemon.

Type
is one of the following:
#define FT_LNKSAVED 1 /* hard link to file already saved */
#define FT_REGE 2 /* Regular file but empty */
#define FT_REG 3 /* Regular file */
#define FT_LNK 4 /* Soft Link */
#define FT_DIR 5 /* Directory */
#define FT_SPEC 6 /* Special file −− chr, blk, fifo, sock */
#define FT_NOACCESS 7 /* Not able to access */
#define FT_NOFOLLOW 8 /* Could not follow link */
#define FT_NOSTAT 9 /* Could not stat file */
#define FT_NOCHG 10 /* Incremental option, file not changed */
#define FT_DIRNOCHG 11 /* Incremental option, directory not changed */
#define FT_ISARCH 12 /* Trying to save archive file */
#define FT_NORECURSE 13 /* No recursion into directory */
#define FT_NOFSCHG 14 /* Different file system, prohibited */
#define FT_NOOPEN 15 /* Could not open directory */
#define FT_RAW 16 /* Raw block device */
#define FT_FIFO 17 /* Raw fifo device */

Filename
is the fully qualified filename.

File−Attributes
consists of the 13 fields of the stat() buffer in ASCII base64 format separated by spaces.
These fields and their meanings are shown below. This stat() packet is in Unix format,
and MUST be provided (constructed) for ALL systems.

Link
when the FT code is FT_LNK or FT_LNKSAVED, the item in question is a Unix link,
and this field contains the fully qualified link name. When the FT code is not FT_LNK
or FT_LNKSAVED, this field is null.

Extended−Attributes
The exact format of this field is operating system dependent. It contains additional or
extended attributes of a system dependent nature. Currently, this field is used only on
WIN32 systems where it contains a ASCII base64 representation of the
WIN32_FILE_ATTRIBUTE_DATA structure as defined by Windows. The fields in the
base64 representation of this structure are like the File−Attributes separated by spaces.

The File−attributes consist of the following:

Field No. Stat Name Unix Win98/NT MacOS

Bacula Storage Management System

Unix File Attributes 374

1 st_dev
Device number of
filesystem

Drive number vRefNum

2 st_ino Inode number Always 0 fileID/dirID

3 st_mode File mode File mode
777 dirs/apps; 666
docs; 444 locked docs

4 st_nlink
Number of links to
the file

Number of link (only
on NTFS)

Always 1

5 st_uid Owner ID Always 0 Always 0

6 st_gid Group ID Always 0 Always 0

7 st_rdev
Device ID for special
files

Drive No. Always 0

8 st_size File size in bytes File size in bytes
Data fork file size in
bytes

9 st_blksize Preferred block size Always 0 Preferred block size

10 st_blocks
Number of blocks
allocated

Always 0
Number of blocks
allocated

11 st_atime
Last access time since
epoch

Last access time since
epoch

Last access time −66
years

12 st_mtime
Last modify time
since epoch

Last modify time since
epoch

Last access time −66
years

13 st_ctime
Inode change time
since epoch

File create time since
epoch

File create time −66
years

Bacula Daemon Protocol Index Bacula Memory Management

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Storage Media Output Format Index Bacula TCP/IP Network Protocol

Bacula Storage Management System

Unix File Attributes 375

http://www.bacula.org/

Bacula Memory Management

General

This document describes the memory management routines that are used in Bacula and is meant
to be a technical discussion for developers rather than part of the user manual.

Since Bacula may be called upon to handle filenames of varying and more or less arbitrary
length, special attention needs to be used in the code to ensure that memory buffers are
sufficiently large. There are four possibilities for memory usage within Bacula. Each will be
described in turn. They are:

Statically allocated memory.•
Dynamically allocated memory using malloc() and free().•
Non−pooled memory.•
Pooled memory.•

Statically Allocated Memory

Statically allocated memory is of the form:

char buffer[MAXSTRING];

The use of this kind of memory is discouraged except when you are 100% sure that the strings to
be used will be of a fixed length. One example of where this is appropriate is for Bacula resource
names, which are currently limited to 127 characters (MAX_NAME_LENGTH). Although this
maximum size may change, particularly to accommodate Unicode, it will remain a relatively
small value.

Dynamically Allocated Memory

Dynamically allocated memory is obtained using the standard malloc() routines. As in:

char *buf;
buf = malloc(256);

This kind of memory can be released with:

free(buf);

It is recommended to use this kind of memory only when you are sure that you know the memory
size needed and the memory will be used for short periods of time −− that is it would not be
appropriate to use statically allocated memory. An example might be to obtain a large memory
buffer for reading and writing files. When SmartAlloc is enabled, the memory obtained by
malloc() will automatically be checked for buffer overwrite (overflow) during the free() call, and
all malloc'ed memory that is not released prior to termination of the program will be reported as
Orphaned memory.

Bacula Memory Management 376

Pooled and Non−pooled Memory

In order to facility the handling of arbitrary length filenames and to efficiently handle a high
volume of dynamic memory usage, we have implemented routines between the C code and the
malloc routines. The first is called "Pooled" memory, and is memory, which once allocated and
then released, is not returned to the system memory pool, but rather retained in a Bacula memory
pool. The next request to acquire pooled memory will return any free memory block. In addition,
each memory block has its current size associated with the block allowing for easy checking if
the buffer is of sufficient size. This kind of memory would normally be used in high volume
situations (lots of malloc()s and free()s) where the buffer length may have to frequently change
to adapt to varying filename lengths.

The non−pooled memory is handled by routines similar to those used for pooled memory,
allowing for easy size checking. However, non−pooled memory is returned to the system rather
than being saved in the Bacula pool. This kind of memory would normally be used in low
volume situations (few malloc()s and free()s), but where the size of the buffer might have to be
adjusted frequently.

Types of Memory Pool

Currently there are three memory pool types:

PM_NOPOOL −− non−pooled memory.•
PM_FNAME −− a filename pool.•
PM_MESSAGE −− a message buffer pool.•
PM_EMSG −− error message buffer pool.•

Getting Memory

To get memory, one uses:

void *get_pool_memory(pool);

where pool is one of the above mentioned pool names. The size of the memory returned will be
determined by the system to be most appropriate for the application.

If you wish non−pooled memory, you may alternatively call:

void *get_memory(size_t size);

The buffer length will be set to the size specified, and it will be assigned to the PM_NOPOOL
pool (no pooling).

Releasing Memory

To free memory acquired by either of the above two calls, use:

void free_pool_memory(void *buffer);

where buffer is the memory buffer returned when the memory was acquired. If the memory was
originally allocated as type PM_NOPOOL, it will be released to the system, otherwise, it will be

Bacula Storage Management System

Pooled and Non−pooled Memory 377

placed on the appropriate Bacula memory pool free chain to be used in a subsequent call for
memory from that pool.

Determining the Memory Size

To determine the memory buffer size, use:

size_t sizeof_pool_memory(void *buffer);

Resizing Pool Memory

To resize pool memory, use:

void *realloc_pool_memory(void *buffer);

The buffer will be reallocated, and the contents of the original buffer will be preserved, but the
address of the buffer may change.

Automatic Size Adjustment

To have the system check and if necessary adjust the size of your pooled memory buffer, use:

void *check_pool_memory_size(void *buffer, size_t new−size);

where new−size is the buffer length needed. Note, if the buffer is already equal to or larger than
new−size no buffer size change will occur. However, if a buffer size change is needed, the
original contents of the buffer will be preserved, but the buffer address may change. Many of the
low level Bacula subroutines expect to be passed a pool memory buffer and use this call to
ensure the buffer they use is sufficiently large.

Releasing All Pooled Memory

In order to avoid orphaned buffer error messages when terminating the program, use:

void close_memory_pool();

to free all unused memory retained in the Bacula memory pool. Note, any memory not returned
to the pool via free_pool_memory() will not be released by this call.

Pooled Memory Statistics

For debugging purposes and performance tuning, the following call will print the current
memory pool statistics:

void print_memory_pool_stats();

an example output is:

Pool Maxsize Maxused Inuse
 0 256 0 0
 1 256 1 0
 2 256 1 0

Bacula Storage Management System

Determining the Memory Size 378

Storage Media Output Format Index Bacula TCP/IP Network Protocol

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Bacula Memory Management Index MD5 Algorithm

Bacula Storage Management System

Determining the Memory Size 379

http://www.bacula.org/

TCP/IP Network Protocol

General

This document describes the TCP/IP protocol used by Bacula to communicate between the
various daemons and services. The definitive definition of the protocol can be found in
src/lib/bsock.h, src/lib/bnet.c and src/lib/bnet_server.c.

Bacula's network protocol is basically a "packet oriented" protocol built on a standard TCP/IP
streams. At the lowest level all packet transfers are done with read() and write() requests on
system sockets. Pipes are not used as they are considered unreliable for large serial data transfers
between various hosts.

Using the routines described below (bnet_open, bnet_write, bnet_recv, and bnet_close)
guarantees that the number of bytes you write into the socket will be received as a single record
on the other end regardless of how many low level write() and read() calls are needed. All data
transferred are considered to be binary data.

bnet and Threads

These bnet routines work fine in a threaded environment. However, they assume that there is
only one reader or writer on the socket at any time. It is highly recommended that only a single
thread access any BSOCK packet. The exception to this rule is when the socket is first opened
and it is waiting for a job to start. The wait in the Storage daemon is done in one thread and then
passed to another thread for subsequent handling.

If you envision having two threads using the same BSOCK, think twice, then you must
implement some locking mechanism. However, it probably would not be appropriate to put locks
inside the bnet subroutines for efficiency reasons.

bnet_open

To establish a connection to a server, use the subroutine:

BSOCK *bnet_open(void *jcr, char *host, char *service, int port, int *fatal)

bnet_open(), if successful, returns the Bacula sock descriptor pointer to be used in subsequent
bnet_send() and bnet_read() requests. If not successful, bnet_open() returns a NULL. If fatal is
set on return, it means that a fatal error occurred and that you should not repeatedly call
bnet_open(). Any error message will generally be sent to the JCR.

bnet_send

To send a packet, one uses the subroutine:

int bnet_send(BSOCK *sock)

This routine is equivalent to a write() except that it handles the low level details. The data to be
sent is expected to be in sock−>msg and be sock−>msglen bytes. To send a packet, bnet_send()

TCP/IP Network Protocol 380

first writes four bytes in network byte order than indicate the size of the following data packet. It
returns:

 Returns 0 on failure
 Returns 1 on success

In the case of a failure, an error message will be sent to the JCR contained within the bsock
packet.

bnet_fsend

This form uses:

int bnet_fsend(BSOCK *sock, char *format, ...)

and it allows you to send a formatted messages somewhat like fprintf(). The return status is the
same as bnet_send.

Additional Error information

Fro additional error information, you can call is_bnet_error(BSOCK *bsock) which will return
0 if there is no error or non−zero if there is an error on the last transmission. The
is_bnet_stop(BSOCK *bsock) function will return 0 if there no errors and you can continue
sending. It will return non−zero if there are errors or the line is closed (no more transmissions
should be sent).

bnet_recv

To read a packet, one uses the subroutine:

int bnet_recv(BSOCK *sock)

This routine is similar to a read() except that it handles the low level details. bnet_read() first
reads packet length that follows as four bytes in network byte order. The data is read into
sock−>msg and is sock−>msglen bytes. If the sock−>msg is not large enough, bnet_recv()
realloc() the buffer. It will return an error (−2) if maxbytes is less than the record size sent. It
returns:

 * Returns number of bytes read
 * Returns 0 on end of file
 * Returns −1 on hard end of file (i.e. network connection close)
 * Returns −2 on error

It should be noted that bnet_recv() is a blocking read.

bnet_sig

To send a "signal" from one daemon to another, one uses the subroutine:

int bnet_sig(BSOCK *sock, SIGNAL)

Bacula Storage Management System

bnet_fsend 381

where SIGNAL is one of the following:

BNET_EOF − deprecated use BNET_EOD1.
BNET_EOD − End of data stream, new data may follow2.
BNET_EOD_POLL − End of data and poll all in one3.
BNET_STATUS − Request full status4.
BNET_TERMINATE − Conversation terminated, doing close()5.
BNET_POLL − Poll request, I'm hanging on a read6.
BNET_HEARTBEAT − Heartbeat Response requested7.
BNET_HB_RESPONSE − Only response permitted to HB8.
BNET_PROMPT − Prompt for UA9.

bnet_strerror

Returns a formated string corresponding to the last error that occurred.

bnet_close

The connection with the server remains open until closed by the subroutine:

void bnet_close(BSOCK *sock)

Becoming a Server

The bnet_open() and bnet_close() routines described above are used on the client side to
establish a connection and terminate a connection with the server. To become a server (i.e. wait
for a connection from a client), use the routine bnet_thread_server. The calling sequence is a
bit complicated, please refer to the code in bnet_server.c and the code at the beginning of each
daemon as examples of how to call it.

Higher Level Conventions

Within Bacula, we have established the convention that any time a single record is passed, it is
sent with bnet_send() and read with bnet_recv(). Thus the normal exchange between the server
(S) and the client (C) are:

S: wait for connection C: attempt connection
S: accept connection C: bnet_send() send request
S: bnet_recv() wait for request
S: act on request
S: bnet_send() send ack C: bnet_recv() wait for ack

Thus a single command is sent, acted upon by the server, and then acknowledged.

In certain cases, such as the transfer of the data for a file, all the information or data cannot be
sent in a single packet. In this case, the convention is that the client will send a command to the
server, who knows that more than one packet will be returned. In this case, the server will enter a
loop:

while ((n=bnet_recv(bsock)) > 0) {
 act on request

Bacula Storage Management System

bnet_strerror 382

}
if (n < 0)
 error

The client will perform the following:

bnet_send(bsock);
bnet_send(bsock);
...
bnet_sig(bsock, BNET_EOD);

Thus the client will send multiple packets and signal to the server when all the packets have been
sent by sending a zero length record.

Bacula Memory Management Index MD5 Algorithm

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

Bacula TCP/IP Network Protocol Index Smart Memory Allocation

Bacula Storage Management System

bnet_strerror 383

http://www.bacula.org/

Command Line Message Digest Utility

This page describes md5, a command line utility usable on either Unix or MS−DOS/Windows, which
generates and verifies message digests (digital signatures) using the MD5 algorithm. This program can be
useful when developing shell scripts or Perl programs for software installation, file comparison, and detection
of file corruption and tampering.

NAME

md5 − generate / check MD5 message digest

SYNOPSIS

md5 [−csignature] [−u] [−dinput_text | infile] [outfile]

DESCRIPTION

A message digest is a compact digital signature for an arbitrarily long stream of binary data. An ideal message
digest algorithm would never generate the same signature for two different sets of input, but achieving such
theoretical perfection would require a message digest as long as the input file. Practical message digest
algorithms compromise in favour of a digital signature of modest size created with an algorithm designed to
make preparation of input text with a given signature computationally infeasible. Message digest algorithms
have much in common with techniques used in encryption, but to a different end; verification that data have
not been altered since the signature was published.

Many older programs requiring digital signatures employed 16 or 32 bit cyclical redundancy codes (CRC)
originally developed to verify correct transmission in data communication protocols, but these short codes,
while adequate to detect the kind of transmission errors for which they were intended, are insufficiently secure
for applications such as electronic commerce and verification of security related software distributions.

The most commonly used present−day message digest algorithm is the 128 bit MD5 algorithm, developed by
Ron Rivest of the MIT Laboratory for Computer Science and RSA Data Security, Inc. The algorithm, with a
reference implementation, was published as Internet RFC 1321 in April 1992, and was placed into the public
domain at that time. Message digest algorithms such as MD5 are not deemed "encryption technology" and are
not subject to the export controls some governments impose on other data security products. (Obviously, the
responsibility for obeying the laws in the jurisdiction in which you reside is entirely your own, but many
common Web and Mail utilities use MD5, and I am unaware of any restrictions on their distribution and use.)

The MD5 algorithm has been implemented in numerous computer languages including C, Perl, and Java; if
you're writing a program in such a language, track down a suitable subroutine and incorporate it into your
program. The program described on this page is a command line implementation of MD5, intended for use in
shell scripts and Perl programs (it is much faster than computing an MD5 signature directly in Perl). This md5
program was originally developed as part of a suite of tools intended to monitor large collections of files (for

384

http://web.mit.edu/
http://www.lcs.mit.edu/
http://www.rsa.com/
http://www.fourmilab.ch/md5/rfc1321.html
http://www.perl.org/
http://www.javasoft.com/

example, the contents of a Web site) to detect corruption of files and inadvertent (or perhaps malicious)
changes. That task is now best accomplished with more comprehensive packages such as Tripwire, but the
command line md5 component continues to prove useful for verifying correct delivery and installation of
software packages, comparing the contents of two different systems, and checking for changes in specific
files.

OPTIONS

−csignature
Computes the signature of the specified infile or the string supplied by the −d option and compares it
against the specified signature. If the two signatures match, the exit status will be zero, otherwise the
exit status will be 1. No signature is written to outfile or standard output; only the exit status is set.
The signature to be checked must be specified as 32 hexadecimal digits.

−dinput_text
A signature is computed for the given input_text (which must be quoted if it contains white space
characters) instead of input from infile or standard input. If input is specified with the −d option, no
infile should be specified.

−u
Print how−to−call information.

FILES

If no infile or −d option is specified or infile is a single "−", md5 reads from standard input; if no outfile is
given, or outfile is a single "−", output is sent to standard output. Input and output are processed strictly
serially; consequently md5 may be used in pipelines.

BUGS

The mechanism used to set standard input to binary mode may be specific to Microsoft C; if you rebuild the
DOS/Windows version of the program from source using another compiler, be sure to verify binary files work
properly when read via redirection or a pipe.

This program has not been tested on a machine on which int and/or long are longer than 32 bits.

 Download md5.zip (Zipped archive)

The program is provided as md5.zip, a Zipped archive containing an ready−to−run Win32 command−line
executable program, md5.exe (compiled using Microsoft Visual C++ 5.0), and in source code form along
with a Makefile to build the program under Unix.

SEE ALSO

sum(1)

Bacula Storage Management System

OPTIONS 385

ftp://coast.cs.purdue.edu/pub/COAST/Tripwire/
http://www.fourmilab.ch/md5/md5.zip
http://www.fourmilab.ch/md5/md5.zip
http://www.fourmilab.ch/md5/md5.zip
http://www.pkware.com/

EXIT STATUS

md5 returns status 0 if processing was completed without errors, 1 if the −c option was specified and the
given signature does not match that of the input, and 2 if processing could not be performed at all due, for
example, to a nonexistent input file.

COPYING

This software is in the public domain. Permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted, without
any conditions or restrictions. This software is provided "as is" without express or implied
warranty.

ACKNOWLEDGEMENTS

The MD5 algorithm was developed by Ron Rivest. The public domain C language implementation used in
this program was written by Colin Plumb in 1993.

by John Walker
January 6th, MIM

Bacula TCP/IP Network Protocol Index Smart Memory Allocation

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula 1.32 User's Guide Chapter

MD5 Algorithm Index

Bacula Storage Management System

EXIT STATUS 386

http://www.fourmilab.ch/
http://www.bacula.org/

Smart Memory Allocation With Orphaned Buffer Detection

Few things are as embarrassing as a program that leaks, yet few errors are so easy to commit or
as difficult to track down in a large, complicated program as failure to release allocated memory.
SMARTALLOC replaces the standard C library memory allocation functions with versions
which keep track of buffer allocations and releases and report all orphaned buffers at the end of
program execution. By including this package in your program during development and testing,
you can identify code that loses buffers right when it's added and most easily fixed, rather than as
part of a crisis debugging push when the problem is identified much later in the testing cycle (or
even worse, when the code is in the hands of a customer). When program testing is complete,
simply recompiling with different flags removes SMARTALLOC from your program, permitting
it to run without speed or storage penalties.

In addition to detecting orphaned buffers, SMARTALLOC also helps to find other common
problems in management of dynamic storage including storing before the start or beyond the end
of an allocated buffer, referencing data through a pointer to a previously released buffer,
attempting to release a buffer twice or releasing storage not obtained from the allocator, and
assuming the initial contents of storage allocated by functions that do not guarantee a known
value. SMARTALLOC's checking does not usually add a large amount of overhead to a program
(except for programs which use realloc() extensively; see below). SMARTALLOC focuses
on proper storage management rather than internal consistency of the heap as checked by the
malloc_debug facility available on some systems. SMARTALLOC does not conflict with
malloc_debug and both may be used together, if you wish. SMARTALLOC makes no
assumptions regarding the internal structure of the heap and thus should be compatible with any
C language implementation of the standard memory allocation functions.

Installing SMARTALLOC

SMARTALLOC is provided as a Zipped archive, smartall.zip; see the download instructions
below.

To install SMARTALLOC in your program, simply add the statement:

#include "smartall.h"

to every C program file which calls any of the memory allocation functions (malloc, calloc,
free, etc.). SMARTALLOC must be used for all memory allocation with a program, so it's best
to add the #include of "smartall.h" to the omnibus include file for your entire program, if you
have such a thing. Next, define the symbol SMARTALLOC in the compilation before the
inclusion of smartall.h. I usually do this by having my Makefile add the "−DSMARTALLOC"
option to the C compiler for non−production builds. You can define the symbol manually, if you
prefer, by adding the statement:

#define SMARTALLOC

387

http://www.fourmilab.ch/smartall/smartall.zip

before the #include of "smartall.h".

At the point where your program is all done and ready to relinquish control to the operating
system, add the call:

 sm_dump(datadump);

where datadump specifies whether the contents of orphaned buffers are to be dumped in addition
printing to their size and place of allocation. The data are dumped only if datadump is nonzero,
so most programs will normally use "sm_dump(0);". If a mysterious orphaned buffer appears
that can't be identified from the information this prints about it, replace the statement with
"sm_dump(1);". Usually the dump of the buffer's data will furnish the additional clues you
need to excavate and extirpate the elusive error that left the buffer allocated.

Finally, add the files "smartall.h" and "smartall.c" from this release to your source directory,
make dependencies, and linker input. You needn't make inclusion of smartall.c in your link
optional; if compiled with SMARTALLOC not defined it generates no code, so you may always
include it knowing it will waste no storage in production builds. Now when you run your
program, if it leaves any buffers around when it's done, each will be reported by sm_dump() on
stderr as follows:

Orphaned buffer: 120 bytes allocated at line 50 of gutshot.c

Squelching a SMARTALLOC

Usually, when you first install SMARTALLOC in an existing program you'll find it nattering
about lots of orphaned buffers. Some of these turn out to be legitimate errors, but some are
storage allocated during program initialisation that, while dynamically allocated, is logically
static storage not intended to be released. Of course, you can get rid of the complaints about
these buffers by adding code to release them, but by doing so you're adding unnecessary
complexity and code size to your program just to silence the nattering of a SMARTALLOC, so
an escape hatch is provided to eliminate the need to release these buffers.

Normally all storage allocated with the functions malloc(), calloc(), and realloc() is
monitored by SMARTALLOC. If you make the function call:

 sm_static(1);

you declare that subsequent storage allocated by malloc(), calloc(), and realloc()
should not be considered orphaned if found to be allocated when sm_dump() is called. I use a
call on "sm_static(1);" before I allocate things like program configuration tables so I don't
have to add code to release them at end of program time. After allocating unmonitored data this
way, be sure to add a call to:

 sm_static(0);

to resume normal monitoring of buffer allocations. Buffers allocated while sm_static(1) is in
effect are not checked for having been orphaned but all the other safeguards provided by
SMARTALLOC remain in effect. You may release such buffers, if you like; but you don't have
to.

Bacula Storage Management System

 Squelching a SMARTALLOC 388

Living with Libraries

Some library functions for which source code is unavailable may gratuitously allocate and return
buffers that contain their results, or require you to pass them buffers which they subsequently
release. If you have source code for the library, by far the best approach is to simply install
SMARTALLOC in it, particularly since this kind of ill−structured dynamic storage management
is the source of so many storage leaks. Without source code, however, there's no option but to
provide a way to bypass SMARTALLOC for the buffers the library allocates and/or releases with
the standard system functions.

For each function xxx redefined by SMARTALLOC, a corresponding routine named
"actuallyxxx" is furnished which provides direct access to the underlying system function, as
follows:

Standard function Direct access function

malloc(size) actuallymalloc(size)

calloc(nelem, elsize) actuallycalloc(nelem, elsize)

realloc(ptr, size) actuallyrealloc(ptr, size)

free(ptr) actuallyfree(ptr)

For example, suppose there exists a system library function named "getimage()" which reads
a raster image file and returns the address of a buffer containing it. Since the library routine
allocates the image directly with malloc(), you can't use SMARTALLOC's free(), as that
call expects information placed in the buffer by SMARTALLOC's special version of
malloc(), and hence would report an error. To release the buffer you should call
actuallyfree(), as in this code fragment:

 struct image *ibuf = getimage("ratpack.img");
 display_on_screen(ibuf);
 actuallyfree(ibuf);

Conversely, suppose we are to call a library function, "putimage()", which writes an image
buffer into a file and then releases the buffer with free(). Since the system free() is being
called, we can't pass a buffer allocated by SMARTALLOC's allocation routines, as it contains
special information that the system free() doesn't expect to be there. The following code uses
actuallymalloc() to obtain the buffer passed to such a routine.

 struct image *obuf =
 (struct image *) actuallymalloc(sizeof(struct image));
 dump_screen_to_image(obuf);
 putimage("scrdump.img", obuf); /* putimage() releases obuf */

It's unlikely you'll need any of the "actually" calls except under very odd circumstances (in four
products and three years, I've only needed them once), but they're there for the rare occasions
that demand them. Don't use them to subvert the error checking of SMARTALLOC; if you want
to disable orphaned buffer detection, use the sm_static(1) mechanism described above. That
way you don't forfeit all the other advantages of SMARTALLOC as you do when using
actuallymalloc() and actuallyfree().

Bacula Storage Management System

 Living with Libraries 389

SMARTALLOC Details

When you include "smartall.h" and define SMARTALLOC, the following standard system
library functions are redefined with the #define mechanism to call corresponding functions
within smartall.c instead. (For details of the redefinitions, please refer to smartall.h.)

 void *malloc(size_t size)
 void *calloc(size_t nelem, size_t elsize)
 void *realloc(void *ptr, size_t size)
 void free(void *ptr)
 void cfree(void *ptr)

cfree() is a historical artifact identical to free().

In addition to allocating storage in the same way as the standard library functions, the
SMARTALLOC versions expand the buffers they allocate to include information that identifies
where each buffer was allocated and to chain all allocated buffers together. When a buffer is
released, it is removed from the allocated buffer chain. A call on sm_dump() is able, by
scanning the chain of allocated buffers, to find all orphaned buffers. Buffers allocated while
sm_static(1) is in effect are specially flagged so that, despite appearing on the allocated
buffer chain, sm_dump() will not deem them orphans.

When a buffer is allocated by malloc() or expanded with realloc(), all bytes of newly
allocated storage are set to the hexadecimal value 0x55 (alternating one and zero bits). Note that
for realloc() this applies only to the bytes added at the end of buffer; the original contents of
the buffer are not modified. Initializing allocated storage to a distinctive nonzero pattern is
intended to catch code that erroneously assumes newly allocated buffers are cleared to zero; in
fact their contents are random. The calloc() function, defined as returning a buffer cleared to
zero, continues to zero its buffers under SMARTALLOC.

Buffers obtained with the SMARTALLOC functions contain a special sentinel byte at the end of
the user data area. This byte is set to a special key value based upon the buffer's memory address.
When the buffer is released, the key is tested and if it has been overwritten an assertion in the
free function will fail. This catches incorrect program code that stores beyond the storage
allocated for the buffer. At free() time the queue links are also validated and an assertion
failure will occur if the program has destroyed them by storing before the start of the allocated
storage.

In addition, when a buffer is released with free(), its contents are immediately destroyed by
overwriting them with the hexadecimal pattern 0xAA (alternating bits, the one's complement of
the initial value pattern). This will usually trip up code that keeps a pointer to a buffer that's been
freed and later attempts to reference data within the released buffer. Incredibly, this is legal in the
standard Unix memory allocation package, which permits programs to free() buffers, then raise
them from the grave with realloc(). Such program "logic" should be fixed, not
accommodated, and SMARTALLOC brooks no such Lazarus buffer" nonsense.

Some C libraries allow a zero size argument in calls to malloc(). Since this is far more likely
to indicate a program error than a defensible programming stratagem, SMARTALLOC disallows
it with an assertion.

When the standard library realloc() function is called to expand a buffer, it attempts to

Bacula Storage Management System

 Living with Libraries 390

expand the buffer in place if possible, moving it only if necessary. Because SMARTALLOC
must place its own private storage in the buffer and also to aid in error detection, its version of
realloc() always moves and copies the buffer except in the trivial case where the size of the
buffer is not being changed. By forcing the buffer to move on every call and destroying the
contents of the old buffer when it is released, SMARTALLOC traps programs which keep
pointers into a buffer across a call on realloc() which may move it. This strategy may prove
very costly to programs which make extensive use of realloc(). If this proves to be a
problem, such programs may wish to use actuallymalloc(), actuallyrealloc(), and
actuallyfree() for such frequently−adjusted buffers, trading error detection for
performance. Although not specified in the System V Interface Definition, many C library
implementations of realloc() permit an old buffer argument of NULL, causing realloc()
to allocate a new buffer. The SMARTALLOC version permits this.

When SMARTALLOC is Disabled

When SMARTALLOC is disabled by compiling a program with the symbol SMARTALLOC not
defined, calls on the functions otherwise redefined by SMARTALLOC go directly to the system
functions. In addition, compile−time definitions translate calls on the "actually...()"
functions into the corresponding library calls; "actuallymalloc(100)", for example,
compiles into "malloc(100)". The two special SMARTALLOC functions, sm_dump() and
sm_static(), are defined to generate no code (hence the null statement). Finally, if
SMARTALLOC is not defined, compilation of the file smartall.c generates no code or data at all,
effectively removing it from the program even if named in the link instructions.

Thus, except for unusual circumstances, a program that works with SMARTALLOC defined for
testing should require no changes when built without it for production release.

The alloc() Function

Many programs I've worked on use very few direct calls to malloc(), using the identically
declared alloc() function instead. Alloc detects out−of−memory conditions and aborts,
removing the need for error checking on every call of malloc() (and the temptation to skip
checking for out−of−memory).

As a convenience, SMARTALLOC supplies a compatible version of alloc() in the file
alloc.c, with its definition in the file alloc.h. This version of alloc() is sensitive to the
definition of SMARTALLOC and cooperates with SMARTALLOC's orphaned buffer detection.
In addition, when SMARTALLOC is defined and alloc() detects an out of memory condition,
it takes advantage of the SMARTALLOC diagnostic information to identify the file and line
number of the call on alloc() that failed.

Overlays and Underhandedness

String constants in the C language are considered to be static arrays of characters accessed
through a pointer constant. The arrays are potentially writable even though their pointer is a
constant. SMARTALLOC uses the compile−time definition ./smartall.wml to obtain the
name of the file in which a call on buffer allocation was performed. Rather than reserve space in
a buffer to save this information, SMARTALLOC simply stores the pointer to the compiled−in
text of the file name. This works fine as long as the program does not overlay its data among
modules. If data are overlayed, the area of memory which contained the file name at the time it

Bacula Storage Management System

 When SMARTALLOC is Disabled 391

was saved in the buffer may contain something else entirely when sm_dump() gets around to
using the pointer to edit the file name which allocated the buffer.

If you want to use SMARTALLOC in a program with overlayed data, you'll have to modify
smartall.c to either copy the file name to a fixed−length field added to the abufhead structure,
or else allocate storage with malloc(), copy the file name there, and set the abfname pointer
to that buffer, then remember to release the buffer in sm_free. Either of these approaches are
wasteful of storage and time, and should be considered only if there is no alternative. Since most
initial debugging is done in non−overlayed environments, the restrictions on SMARTALLOC
with data overlaying may never prove a problem. Note that conventional overlaying of code, by
far the most common form of overlaying, poses no problems for SMARTALLOC; you need only
be concerned if you're using exotic tools for data overlaying on MS−DOS or other
address−space−challenged systems.

Since a C language "constant" string can actually be written into, most C compilers generate a
unique copy of each string used in a module, even if the same constant string appears many
times. In modules that contain many calls on allocation functions, this results in substantial
wasted storage for the strings that identify the file name. If your compiler permits optimization of
multiple occurrences of constant strings, enabling this mode will eliminate the overhead for these
strings. Of course, it's up to you to make sure choosing this compiler mode won't wreak havoc on
some other part of your program.

Test and Demonstration Program

A test and demonstration program, smtest.c, is supplied with SMARTALLOC. You can build
this program with the Makefile included. Please refer to the comments in smtest.c and the
Makefile for information on this program. If you're attempting to use SMARTALLOC on a new
machine or with a new compiler or operating system, it's a wise first step to check it out with
smtest first.

Invitation to the Hack

SMARTALLOC is not intended to be a panacea for storage management problems, nor is it
universally applicable or effective; it's another weapon in the arsenal of the defensive
professional programmer attempting to create reliable products. It represents the current state of
evolution of expedient debug code which has been used in several commercial software products
which have, collectively, sold more than third of a million copies in the retail market, and can be
expected to continue to develop through time as it is applied to ever more demanding projects.

The version of SMARTALLOC here has been tested on a Sun SPARCStation, Silicon Graphics
Indigo², and on MS−DOS using both Borland and Microsoft C. Moving from compiler to
compiler requires the usual small changes to resolve disputes about prototyping of functions,
whether the type returned by buffer allocation is char * or void *, and so forth, but
following those changes it works in a variety of environments. I hope you'll find
SMARTALLOC as useful for your projects as I've found it in mine.

 Download smartall.zip (Zipped archive)

Bacula Storage Management System

 Test and Demonstration Program 392

http://www.fourmilab.ch/smartall/smartall.zip
http://www.fourmilab.ch/smartall/smartall.zip

SMARTALLOC is provided as smartall.zip, a Zipped archive containing source code,
documentation, and a Makefile to build the software under Unix.

Copying

SMARTALLOC is in the public domain. Permission to use, copy, modify, and
distribute this software and its documentation for any purpose and without fee is
hereby granted, without any conditions or restrictions. This software is provided
"as is" without express or implied warranty.

by John Walker
October 30th, 1998

MD5 Algorithm Index

Bacula 1.32 User's Guide
The Network Backup Solution

Copyright © 2000−2003
Kern Sibbald and John Walker

Bacula Storage Management System

 Copying 393

http://www.fourmilab.ch/smartall/smartall.zip
http://www.pkware.com/
http://www.fourmilab.ch
http://www.bacula.org/

